
This is a special edition of an established title widely used by colleges and
universities throughout the world. Pearson published this exclusive edition
for the benefit of students outside the United States and Canada. If you
purchased this book within the United States or Canada, you should be aware
that it has been imported without the approval of the Publisher or Author.

At a time when software products have become a part of almost every aspect of our daily
life — assisting with work, our commute, and staying fit, to give a few examples — the
need for courses on creating software increases by the day. Contrary to popular belief,
software engineering depends on factors above and beyond coding skills. Engineering
Software Products focuses on these activities, so important for producing dependable and
functional software.

Key Features

• Unique approach Written in an informal style, this book focuses on products and
not projects, unlike other texts on this subject. It covers topics such as personas
and scenarios, cloud computing, microservices, security, and DevOps, not present in
similar titles.

• Makes concepts relatable This book makes use of software systems that learners
are likely to use constantly or are already familiar with. This makes it easier for students
to understand software engineering techniques.

• Concise coverage Designed for a one-semester course, this book has concise
coverage of topics like software products, agile software engineering, scenarios and
user stories, software architecture, cloud-based software, security and privacy, and
code management.

• New appendix Written specifically for this Global Edition, this appendix explains
the differences between project-based and product-based software engineering.

Engineering Softw
are Products

An Introduction to M
odern Softw

are Engineering
Som

m
erville

G
LO

B
A

L
ED

IT
IO

N

Engineering Software Products
An Introduction to Modern

Software Engineering

Ian Sommerville

GLOBAL
EDITION

GLOBAL
EDITION G

L
O

B
A

L
ED

IT
IO

N

CVR_SOMM6349_01_GE_CVR.indd 1 17/10/20 2:46 PM

ENGINEERING SOFTWARE
PRODUCTS
An Introduction to Modern Software
Engineering

Global Edition

Ian Sommerville

Harlow, England • London • New York • Boston • San Francisco • Toronto • Sydney • Dubai • Singapore • Hong Kong
Tokyo • Seoul • Taipei • New Delhi • Cape Town • São Paulo • Mexico City • Madrid • Amsterdam • Munich • Paris • Milan

A01_SOME6349_01_GE_FM.indd 1 08/10/2020 21:27

Pearson Education Limited

KAO Two

KAO Park

Hockham Way

Harlow

CM17 9SR

United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

© Pearson Education Limited, 2021

The rights of Ian Sommerville to be identified as the author of this work have been asserted by him in accordance with the Copyright,

Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Engineering Software Products, 1st Edition, ISBN 978-0-13-521064-2
by Ian Sommerville, published by Pearson Education ©2020.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a

license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10

Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author

or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or

endorsement of this book by such owners. For information regarding permissions, request forms, and the appropriate contacts within

the Pearson Education Global Rights and Permissions department, please visit www.pearsoned.com/permissions.

This eBook is a standalone product and may or may not include all assets that were part of the print version. It also does not provide

access to other Pearson digital products like MyLab and Mastering. The publisher reserves the right to remove any material in this

eBook at any time.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN 10: 1-292-37634-1

ISBN 13: 978-1-292-37634-9

eBook ISBN 13: 978-1-292-37635-6

http://www.pearsonglobaleditions.com
http://www.pearsoned.com/permissions/
http://www.pearsonglobaleditions.com
http://www.pearsoned.com/permissions.

Software products, such as stand-alone programs, web apps and services, and mobile
apps, have transformed our everyday life and work. There are tens of thousands of
software product companies, and hundreds of thousands of software engineers are
employed worldwide in software product development.

Contrary to what some people may think, engineering software products needs
more than coding skills. So, I’ve written this book to introduce some of the software
engineering activities that are important for the production of reliable and secure
software products.

Who is the book for?

The book has been designed for students taking a first course in software engineering.
People thinking about developing a product who don’t have much software engineer-
ing experience may also find it useful.

Why do we need a software engineering book that’s
focused on software products?

Most software engineering texts focus on project-based software engineering, where
a client develops a specification and the software is developed by another company.
However, the software engineering methods and techniques that have been developed
for large-scale projects are not suited to software product development.

PREFACE

A01_SOME6349_01_GE_FM.indd 3 08/10/2020 21:27

4 Preface

Students often find it difficult to relate to large, custom software systems. I think
that students find it easier to understand software engineering techniques when they
are relevant to the type of software that they constantly use. Also, many product engi-
neering techniques are more directly relevant to student projects than project-oriented
techniques.

Is this a new edition of your other software engineering
textbook?

No, this book takes a completely different approach and, apart from a couple of dia-
grams, does not reuse any material from Software Engineering, 10th edition.

What’s in the book?

Ten chapters cover software products, agile software engineering, features, scenarios
and user stories, software architecture, cloud-based software, microservices archi-
tecture, security and privacy, reliable programming, testing, and DevOps and code
management.

I’ve designed the book so that it’s suitable for a one-semester software engineering
course.

How is this book different from other introductory texts
on software engineering?

As I said, the focus is on products rather than projects. I cover techniques that most
other SE texts don’t cover, such as personas and scenarios, cloud computing, micro-
services, security, and DevOps. As product innovation doesn’t come from university
research, there are no citations or references to research and the book is written in an
informal style.

A01_SOME6349_01_GE_FM.indd 4 08/10/2020 21:27

Preface 5

What do I need to know to get value from the book?

I assume that you have programming experience with a modern object- oriented
 programming language such as Java or Python and that you are familiar with good
programming practice, such as the use of meaningful names. You should also under-
stand basic computing concepts, such as objects, classes, and databases. The program
examples in the book are written in Python, but they are understandable by anyone
with programming experience.

What extra material is available to help teachers
and instructors?

1. An instructor’s manual with solutions to exercises and quiz questions for all
chapters

2. Suggestions how you can use the book in a one-semester software engineering
course

3. Presentations for teaching (Keynote, PowerPoint, and PDF)

You can access this material along with additional material at: www.pearsonglobaleditions
.com

Where can I find out more?

I’ve written a couple of blog posts that are relevant to the book. These provide more
information about my thoughts on teaching software engineering and my motivation
for writing the book.

“Out with the UML (and other stuff too): reimagining introductory

courses in software engineering”

https://iansommerville.com/systems-software-and-technology/what-

should-we-teach-in-software-engineering-courses/

“Engineering Software Products”

https://iansommerville.com/systems-software-and-technology

/engineering-software-products/

A01_SOME6349_01_GE_FM.indd 5 08/10/2020 21:27

http://www.pearsonglobaleditions.com
https://iansommerville.com/systems-software-and-technology/what-should-we-teach-in-software-engineering-courses/
https://iansommerville.com/systems-software-and-technology/what-should-we-teach-in-software-engineering-courses/
https://iansommerville.com/systems-software-and-technology/engineering-software-products/
http://www.pearsonglobaleditions.com
https://iansommerville.com/systems-software-and-technology/engineering-software-products/

Acknowledgments

I’d like to thank the reviewers who made helpful and supportive suggestions when
they reviewed the initial proposal for this book:

Paul Eggert—UCLA Los Angeles
Jeffrey Miller—University of Southern California
Harvey Siy—University of Nebraska Omaha
Edmund S. Yu—Syracuse University
Gregory Gay—University of South Carolina
Josh Delinger—Towson University
Rocky Slavin—University of Texas San Antonio
Bingyang Wei—Midwestern State University

Thanks also to Adam Barker from St. Andrews University for keeping me right on
containers and to Rose Kernan who managed the production of the book.

Thanks, as ever, to my family for their help and support while I was writing the
book. Particular thanks to my daughter Jane, who did a great job of reading and
commenting on the text. She was a brutal editor! Her suggested changes significantly
improved the quality of my prose.

Finally, special thanks to our newest family member, my beautiful grandson
 Cillian, who was born while I was writing this book. His bubbly personality and
constant smiles were a very welcome distraction from the sometimes tedious job of
book writing and editing.

Ian Sommerville

6 Preface

A01_SOME6349_01_GE_FM.indd 6 08/10/2020 21:27

CONTENTS

Chapter 1 Software Products 11

1.1 The product vision 17

1.2 Software product management 21

1.3 Product prototyping 26

Key Points 27

Recommended Reading 28

Presentations, Videos, and Links 28

Exercises 29

Chapter 2 Agile Software Engineering 30

2.1 Agile methods 30

2.2 Extreme Programming 34

2.3 Scrum 37

Key Points 57

Recommended Reading 58

Presentations, Videos, and Links 58

Exercises 59

A01_SOME6349_01_GE_FM.indd 7 08/10/2020 21:27

8 Contents

Chapter 3 Features, Scenarios, and Stories 60

3.1 Personas 64

3.2 Scenarios 69

3.3 User stories 76

3.4 Feature identification 80

Key Points 89

Recommended Reading 90

Presentations, Videos, and Links 90

Exercises 90

Chapter 4 Software Architecture 92

4.1 Why is architecture important? 94

4.2 Architectural design 98

4.3 System decomposition 102

4.4 Distribution architecture 113

4.5 Technology issues 119

Key Points 123

Recommended Reading 124

Presentations, Videos, and Links 124

Exercises 125

Chapter 5 Cloud-Based Software 126

5.1 Virtualization and containers 128

5.2 Everything as a service 134

5.3 Software as a service 137

5.4 Multi-tenant and multi-instance systems 142

5.5 Cloud software architecture 150

Key Points 157

Recommended Reading 158

A01_SOME6349_01_GE_FM.indd 8 08/10/2020 21:27

Contents 9

Presentations, Videos, and Links 159

Exercises 159

Chapter 6 Microservices Architecture 160

6.1 Microservices 164

6.2 Microservices architecture 167

6.3 RESTful services 183

6.4 Service deployment 189

Key Points 192

Recommended Reading 193

Presentations, Videos, and Links 194

Exercises 194

Chapter 7 Security and Privacy 195

7.1 Attacks and defenses 198

7.2 Authentication 205

7.3 Authorization 211

7.4 Encryption 213

7.5 Privacy 223

Key Points 227

Recommended Reading 228

Presentations, Videos, and Links 229

Exercises 229

Chapter 8 Reliable Programming 231

8.1 Fault avoidance 233

8.2 Input validation 252

8.3 Failure management 259

Key Points 266

A01_SOME6349_01_GE_FM.indd 9 08/10/2020 21:27

10 Contents

Recommended Reading 266

Presentations, Videos, and Links 267

Exercises 267

Chapter 9 Testing 269

9.1 Functional testing 272

9.2 Test automation 283

9.3 Test-driven development 291

9.4 Security testing 295

9.5 Code reviews 298

Key Points 302

Recommended Reading 302

Presentations, Videos, and Links 303

Exercises 303

Chapter 10 DevOps and Code Management 305

10.1 Code management 309

10.2 DevOps automation 320

10.3 DevOps measurement 331

Key Points 336

Recommended Reading 336

Presentations, Videos, and Links 337

Exercises 337

Appendix 1 339

Index 354

A01_SOME6349_01_GE_FM.indd 10 08/10/2020 21:27

Software Products

This book introduces software engineering techniques that are used to develop
software products. Software products are generic software systems sold to
governments, businesses, and consumers. They may be designed to support a
business function, such as accounting; they may be productivity tools, such as
note-taking systems; or they may be games or personal information systems.
Software products range in size from millions of lines of code in large-scale busi-
ness systems to a few hundred lines of code in a simple app for mobile phones.

We all use software products every day on our computers, tablets, and
phones. I am using a software product—the Ulysses editor—to write this
book. I’ll use another editing product—Microsoft Word—to format the final
version, and I’ll use Dropbox to exchange the files with the publisher. On my
phone, I use software products (apps) to read email, read and send tweets,
check the weather, and so on.

The engineering techniques that are used for product development have
evolved from the software engineering techniques developed in the 20th cen-
tury to support custom software development. When software engineering
emerged as a discipline in the 1970s, virtually all professional software was
“one-off,” custom software. Companies and governments wanted to automate
their businesses, and they specified what they wanted their software to do. An
in-house engineering team or an external software company then developed
the software.

Examples of custom software that were developed around that time include:

■■ the U.S. Federal Aviation Administration’s air traffic management system;

■■ accounting systems for all of the major banks;

1

M01_SOME6349_01_GE_C01.indd 11 30/09/2020 15:49

12 Chapter 1 ■ Software Products

■■ billing systems for utility companies such as electricity and gas suppliers;

■■ military command and control systems.

Software projects were set up to develop these one-off systems, with
the software system based on a set of software requirements. The contract
between the software customer and the software development company
included a requirements document, which was a specification of the software
that should be delivered. Customers defined their requirements and worked
with the development team to specify, in detail, the software’s functionality
and its critical attributes.

This project-based approach dominated the software industry for more than
25 years. The methods and techniques that evolved to support project-based
development came to define what was meant by “software engineering.” The
fundamental assumption was that successful software engineering required a
lot of preparatory work before starting to write programs. For example, it was
important to spend time getting the requirements “right” and to draw graphical
models of the software. These models were created during the software design
process and used to document the software.

As more and more companies automated their business, however, it
became clear that most businesses didn’t really need custom software. They
could use generic software products that were designed for common busi-
ness problems. The software product industry developed to meet this need.
Project-based software engineering techniques were adapted to software
product development.

Project-based techniques are not suited to product development because of
fundamental differences between project-based and product-based software
engineering. These differences are illustrated in Figures 1.1 and 1.2.

Software projects involve an external client or customer who decides on
the functionality of the system and enters into a legal contract with the soft-
ware development company. The customer’s problem and current processes
are used as a basis for creating the software requirements, which specify
the software to be implemented. As the business changes, the supporting
software has to change. The company using the software decides on and
pays for the changes. Software often has a long lifetime, and the costs of
changing large systems after delivery usually exceed the initial software
development costs.

Software products are specified and developed in a different way. There is
no external customer who creates requirements that define what the software

M01_SOME6349_01_GE_C01.indd 12 30/09/2020 15:49

 Chapter 1 ■ Software Products 13

must do. The software developer decides on the features of the product, when
new releases are to be made available, the platforms on which the software
will be implemented, and so on. The needs of potential customers for the
software are obviously considered, but customers can’t insist that the software
includes particular features or attributes. The development company chooses
when changes will be made to the software and when they will be released
to users.

As development costs are spread over a much larger customer base,
product-based software is usually cheaper, for each customer, than custom
software. However, buyers of the software have to adapt their ways of work-
ing to the software, since it has not been developed with their specific needs
in mind. As the developer rather than the user is in control of changes, there

Figure 1.1 Project-based software engineering

Problem

Requirements Software

CUSTOMER

CUSTOMER and
DEVELOPER

DEVELOPER

implemented-by

helps-withgenerates

Figure 1.2 Product-based software engineering

Opportunity

Product
features Software

DEVELOPER

DEVELOPER DEVELOPER

implemented-by

realizesinspires

M01_SOME6349_01_GE_C01.indd 13 30/09/2020 15:49

14 Chapter 1 ■ Software Products

is a risk that the developer will stop supporting the software. Then the product
customers will need to find an alternative product.

The starting point for product development is an opportunity that a com-
pany has identified to create a viable commercial product. This may be an
original idea, such as Airbnb’s idea for sharing accommodations; an improve-
ment over existing systems, such as a cloud-based accounting system; or a
generalization of a system that was developed for a specific customer, such
as an asset management system.

Because the product developer is responsible for identifying the oppor-
tunity, they can decide on the features that will be included in the software
product. These features are designed to appeal to potential customers so that
there is a viable market for the software.

As well as the differences shown in Figures 1.1 and 1.2, there are two
other important differences between project-based and product-based soft-
ware engineering:

1. Product companies can decide when to change their product or take their
product off the market. If a product is not selling well, the company can
cut costs by stopping its development. Custom software developed in
a software project usually has a long lifetime and has to be supported
throughout that lifetime. The customer pays for the support and decides
when and if it should end.

2. For most products, getting the product to customers quickly is critical.
Excellent products often fail because an inferior product reaches the mar-
ket first and customers buy that product. In practice, buyers are reluctant
to change products after they have invested time and money in their initial
choice.

Bringing the product to the market quickly is important for all types of prod-
ucts, from small-scale mobile apps to enterprise products such as Microsoft
Word. This means that engineering techniques geared to rapid software devel-
opment (agile methods) are universally used for product development. I explain
agile methods and their role in product development in Chapter 2.

If you read about software products, you may come across two other terms:
“software product lines” and “platforms” (Table 1.1). Software product lines
are systems designed to be adaptable to meet the specific needs of customers
by changing parts of the source code. Platforms provide a set of features that
can be used to create new functionality. However, you always have to work
within the constraints defined by the platform suppliers.

M01_SOME6349_01_GE_C01.indd 14 30/09/2020 15:49

 Chapter 1 ■ Software Products 15

When software products were first developed, they were delivered on a
disk and installed by customers on their computers. The software ran on those
computers and user data were stored on them. There was no communication
between the users’ computers and the vendor’s computers. Now, customers
can download products from either an app store or the vendor’s website.

Some products are still based on a stand-alone execution model in which all
computation is carried out on the product owner’s computers. However, ubiq-
uitous high-speed networking means that alternative execution models are now
available. In these models, the product owner’s computers act as a client, with
some or all execution and data storage on the vendor’s servers (Figure 1.3).

There are two alternatives to stand-alone software products:

1. Hybrid products Some functionality is implemented on the user’s com-
puter and some on the product vendor’s servers that are accessed over
the Internet. Many phone apps are hybrid products with computationally
intensive processing offloaded to remote servers.

2. Service-based products Applications are accessed over the Internet from
a web browser or an app. There may be some local processing using

Technology Description

Software
product line

A set of software products that share a common core. Each member
of the product line includes customer-specific adaptations and
additions. Software product lines may be used to implement a
custom system for a customer with specific needs that can’t be met
by a generic product.

For example, a company providing communication software to the
emergency services may have a software product line where the
core product includes basic communication services such as receive
and log calls, initiate an emergency response, pass information to
vehicles, and so on. However, each customer may use different
radio equipment and their vehicles may be equipped in different
ways. The core product has to be adapted for each customer to work
with the equipment that they use.

Platform A software (or software+hardware) product that includes
functionality so that new applications can be built on it. An example
of a platform that you probably use is Facebook. It provides an
extensive set of product functionality but also provides support for
creating “Facebook apps.” These add new features that may be
used by a business or a Facebook interest group.

Table 1.1 Software product lines and platforms

M01_SOME6349_01_GE_C01.indd 15 30/09/2020 15:49

16 Chapter 1 ■ Software Products

Javascript, but most computation is carried out on remote servers. More
and more product companies are converting their products to services
because it simplifies product updating and makes new business mod-
els, such as pay-as-you-go, feasible. I cover service-oriented systems in
Chapters 5 and 6.

As I have said, the key characteristic of product development is that
there is no external customer who generates software requirements and
pays for the software. This is also true for some other types of software
development:

1. Student projects As part of a computing or engineering course, students
may be set assignments in which they work in groups to develop software.
The group is responsible for deciding on the features of the system and
how to work together to implement these features.

2. Research software Software is developed by a research team to support
their work. For example, climate research depends on large-scale climate
models that are designed by researchers and implemented in software. On
a smaller scale, an engineering group may build software to model the
characteristics of the material they are using.

3. Internal tool development A software development team may decide
that it needs some specific tools to support their work. They specify and
implement these tools as “internal” products.

Figure 1.3 Software execution models

User’s computer

Vendor’s servers

Product updates

User interface
Product functionality

User data

User’s computer

Additional functionality
User data backups
Product updates

User interface
Partial functionality

User data

User’s computer

Product functionality
User data

User interface
(browser or app)

Stand-alone execution Hybrid execution Software as a service

Vendor’s servers Vendor’s servers

M01_SOME6349_01_GE_C01.indd 16 30/09/2020 15:49

 1.1 ■ The product vision 17

You can use the product development techniques that I explain here for
any type of software development that is not driven by external customer
requirements.

There is a common view that software product engineering is simply
advanced programming and that traditional software engineering is irrelevant.
All you need to know is how to use a programming language plus the frame-
works and libraries for that language. This is a misconception and I have writ-
ten this book to explain the activities, apart from programming, that I believe
are essential for developing high-quality software products.

If your product is to be a success, you need to think about issues other
than programming. You must try to understand what your customers need
and how potential users can work with your software. You need to design
the overall structure of your software (software architecture) and know about
technologies such as cloud computing and security engineering. You need to
use professional techniques for verifying and testing your software and code
management systems to keep track of a changing codebase.

You also need to think about the business case for your product. You must sell
your product to survive. Creating a business case may involve market research,
an analysis of competitors, and an understanding of the ways that target custom-
ers live and work. This book is about engineering, however, not business, so I
don’t cover business and commercial issues here.

1.1 The product vision

Your starting point for product development should be an informal “product
vision.” A product vision is a simple and succinct statement that defines the
essence of the product that is being developed. It explains how the product
differs from other competing products. This product vision is used as a basis
for developing a more detailed description of the features and attributes of
the product. As new features are proposed, you should check them against the
vision to make sure they contribute to it.

The product vision should answer three fundamental questions:

1. What is the product that you propose to develop? What makes this product
 different from competing products?

2. Who are the target users and customers for the product?

3. Why should customers buy this product?

M01_SOME6349_01_GE_C01.indd 17 30/09/2020 15:49

18 Chapter 1 ■ Software Products

The need for the first question is obvious—before you start, you need to
know what you are aiming for. The other questions concern the commercial via-
bility of the product. Most products are intended for use by customers outside
of the development team. You need to understand their background to create a
viable product that these customers will find attractive and be willing to buy.

If you search the web for “product vision,” you will find several variants
of these questions and templates for expressing the product vision. Any of
these templates can be used. The template that I like comes from the book
Crossing the Chasm by Geoffrey Moore.1 Moore suggests using a structured
approach to writing the product vision based on keywords:

■■ FOR (target customer)

■■ WHO (statement of the need or opportunity)

■■ The (PRODUCT NAME) is a (product category)

■■ THAT (key benefit, compelling reason to buy)

■■ UNLIKE (primary competitive alternative)

■■ OUR PRODUCT (statement of primary differentiation)

On his blog Joel on Software, Joel Spolsky gives an example of a product
described using this vision template:2

FOR a mid-sized company’s marketing and sales departments WHO
need basic CRM functionality, THE CRM-Innovator is a Web-based
service THAT provides sales tracking, lead generation, and sales repre-
sentative support features that improve customer relationships at criti-
cal touch points. UNLIKE other services or package software products,
OUR product provides very capable services at a moderate cost.

You can see how this vision answers the key questions that I identified above:

1. What A web-based service that provides sales tracking, lead generation,
and sales representative support features. The information can be used to
improve relationships with customers.

1Geoffrey Moore, Crossing the Chasm: Marketing and selling technology products to main-
stream customers (Capstone Trade Press, 1998).
2J. Spolsky, Product Vision, 2002; http://www.joelonsoftware.com/articles/JimHighsmithon-
ProductVisi.html

M01_SOME6349_01_GE_C01.indd 18 30/09/2020 15:49

http://www.joelonsoftware.com/articles/JimHighsmithon-ProductVisi.html
http://www.joelonsoftware.com/articles/JimHighsmithon-ProductVisi.html

 1.1 ■ The product vision 19

2. Who The product is aimed at medium-sized companies that need standard
customer relationship management software.

3. Why The most important product distinction is that it provides capa-
ble services at a moderate cost. It will be cheaper than alternative
products.

A great deal of mythology surrounds software product visions. For suc-
cessful consumer software products, the media like to present visions as if
they emerge from a “Eureka moment” when the company founders have an
“awesome idea” that changes the world. This view oversimplifies the effort
and experimentation that are involved in refining a product idea. Product
visions for successful products usually emerge after a lot of work and discus-
sion. An initial idea is refined in stages as more information is collected and
the development team discusses the practicalities of product implementa-
tion. Several different sources of information contribute to the product vision
(Table 1.2).

Information source Explanation

Domain experience The product developers may work in a particular area (say,
marketing and sales) and understand the software support
that they need. They may be frustrated by the deficiencies in
the software they use and see opportunities for an improved
system.

Product experience Users of existing software (such as word processing software)
may see simpler and better ways of providing comparable
functionality and propose a new system that implements this.
New products can take advantage of recent technological
developments such as speech interfaces.

Customer experience The software developers may have extensive discussions
with prospective customers of the product to understand
the problems that they face; constraints, such as
interoperability, that limit their flexibility to buy new
software; and critical attributes of the software that they
need.

Prototyping and
“playing around”

Developers may have an idea for software but need to
develop a better understanding of that idea and what might
be involved in developing it into a product. They may develop
a prototype system as an experiment and “play around”
with ideas and variations using that prototype system as a
platform.

Table 1.2 Information sources for developing a product vision

M01_SOME6349_01_GE_C01.indd 19 30/09/2020 15:49

20 Chapter 1 ■ Software Products

1.1.1 A vision example

As students, readers of this book may have used Virtual Learning Environ-
ments (VLEs), such as Blackboard and Moodle. Teachers use these VLEs to
distribute class materials and assignments. Students can download the materi-
als and upload completed assignments. Although the name suggests that VLEs
are focused on learning, they are really geared to supporting learning admin-
istration rather than learning itself. They provide some features for students,
but they are not open learning environments that can be tailored and adapted
to a particular teacher’s needs.

A few years ago, I worked on the development of a digital environ-
ment for learning support. This product was not just another VLE but was
intended to provide flexible support for the process of learning. Our team
looked at existing VLEs and talked to teachers and students who used them.
We visited different types of school from kindergartens to colleges to exam-
ine how they used learning environments and how teachers were experi-
menting with software outside of these environments. We had extensive
discussions with teachers about what they would like to be able to do with
a digital learning environment. We finally arrived at the vision statement
shown in Table 1.3.

In education, the teachers and students who use learning environments are
not responsible for buying software. The purchaser is a school, university,
or training center. The purchasing officer needs to know the benefits to the
organization. Therefore, we added the final paragraph to the vision statement
in Table 1.3 to make clear that there are benefits to organizations as well as
individual learners.

FOR teachers and educators WHO need a way to help students use web-based learning
resources and applications, THE iLearn system is an open learning environment THAT
allows the set of resources used by classes and students to be easily configured for these
students and classes by teachers themselves.
UNLIKE Virtual Learning Environments, such as Moodle, the focus of iLearn is the learning
process rather than the administration and management of materials, assessments,
and coursework. OUR product enables teachers to create subject and age-specific
environments for their students using any web-based resources, such as videos,
simulations, and written materials that are appropriate.

Schools and universities are the target customers for the iLearn system as it will
significantly improve the learning experience of students at relatively low cost. It will
collect and process learner analytics that will reduce the costs of progress tracking and
reporting.

Table 1.3 A vision statement for the iLearn system

M01_SOME6349_01_GE_C01.indd 20 30/09/2020 15:49

 1.2 ■ Software product management 21

1.2 Software product management

Software product management is a business activity focusing on the soft-
ware products that are developed and sold by the business. Product manag-
ers (PMs) take overall responsibility for the product and are involved in
planning, development, and marketing. They are the interface between the
software development team, the broader organization, and the product’s
customers. PMs should be full members of the development team so that
they can communicate business and customer requirements to the software
developers.

Software product managers are involved at all stages of a product’s life—
from initial conception through vision development and implementation to
marketing. Finally, they make decisions on when the product should be with-
drawn from the market. Mid-size and large software companies may have
dedicated PMs; in smaller software companies, the PM role is likely to be
shared with other technical or business roles.

The job of the PM is to look outward to the customers and potential cus-
tomers of the product rather than to focus on the software that is being devel-
oped. It is all too easy for a development team to get caught up in the details
of “cool features” of the software, which most customers probably don’t care
about. For a product to be successful, the PM has to ensure that the develop-
ment team implements features that deliver real value to customers, not just
features that are technically interesting.

In a blog post, Martin Eriksson3 explains that product managers have to be
 concerned with business, technology, and user experience issues. Figure 1.4,
which I based on Martin’s diagram, illustrates these multiple concerns.

Product managers have to be generalists, with both technical and commu-
nication skills. Business, technology, and customer issues are interdependent
and PMs have to consider all of them:

1. Business needs PMs have to ensure that the software being developed
meets the business goals and objectives of both the software product com-
pany and its customers. They must communicate the concerns and needs
of the customers and the development team to the managers of the product
business. They work with senior managers and with marketing staff to
plan a release schedule for the product.

3Based on M. Erikkson, What, exactly, is a Product Manager, 2011; http://www.mindtheprod-
uct.com/2011/10/what-exactly-is-a-product-manager/

M01_SOME6349_01_GE_C01.indd 21 30/09/2020 15:49

http://www.mindtheprod-uct.com/2011/10/what-exactly-is-a-product-manager/
http://www.mindtheprod-uct.com/2011/10/what-exactly-is-a-product-manager/

22 Chapter 1 ■ Software Products

2. Technology constraints PMs must make developers aware of technology
issues that are important to customers. These may affect the schedule,
cost, and functionality of the product that is being developed.

3. Customer experience PMs should be in regular communication with cus-
tomers to understand what they are looking for in a product, the types of
user and their backgrounds, and the ways in which the product may be
used. Their experience of customer capabilities is a critical input to the
design of the product’s user interface. PMs may also involve customers
in alpha and beta product testing.

Because of the engineering focus of this book, I do not go into detail about
the business role of product managers or their role in areas such as market
research and financial planning. Rather, I concentrate on their interactions
with the development team. PMs may interact with the development team in
seven key areas (Figure 1.5).

1.2.1 Product vision management

Some writers say that the product manager should be responsible for devel-
oping the product vision. Large companies may adopt this approach, but it is
often impractical in small software companies. In startups, the source of the
product vision is often an original idea by the company founders. This vision
is often developed long before anyone thinks about appointing a PM.

Obviously, it makes sense for PMs to take the lead in developing the prod-
uct vision. They should be able to bring market and customer information to

Figure 1.4 Product management concerns

Business

Technology Customer
experience

Product
manager

M01_SOME6349_01_GE_C01.indd 22 30/09/2020 15:49

 1.2 ■ Software product management 23

the process. However, I think all team members should be involved in vision
development so that everyone can support what is finally agreed. When the
team “owns” the vision, everyone is more likely to work coherently to realize
that vision.

A key role of PMs is to manage the product vision. During the develop-
ment process, changes are inevitably proposed by people from both inside
and outside of the development team. PMs have to assess and evaluate these
changes against the product vision. They must check that the changes don’t
contradict the ideas embodied in the product vision. PMs also have to ensure
that there is no “vision drift,” in which the vision is gradually extended to
become broader and less focused.

1.2.2 Product roadmap development

A product roadmap is a plan for the development, release, and marketing
of the software product. It sets out important product goals and milestones,
such as the completion of critical features, the completion of the first version
for user testing, and so on. It includes dates when these milestones should
be reached and success criteria that help assess whether project goals have
been attained. The roadmap should include a release schedule showing when

Figure 1.5 Technical interactions of product managers

Product
manager

Acceptance
testing

Customer
testing

Product vision
management

Product
backlog

management

Product
roadmap

development

User story
and scenario
development

User interface
design

M01_SOME6349_01_GE_C01.indd 23 30/09/2020 15:49

24 Chapter 1 ■ Software Products

different releases of the software will be available and the key features that
will be included in each release.

The development of the product roadmap should be led by the product
manager but must also involve the development team as well as company
managers and marketing staff. Depending on the type of product, important
deadlines may have to be met if the product is to be successful. For example,
many large companies must make decisions on procurement toward the end
of their financial year. If you want to sell a new product to such companies,
you have to make it available before then.

1.2.3 User story and scenario development

User stories and scenarios are widely used to refine a product vision to iden-
tify features of the product. They are natural language descriptions of things
that users might want to do with a product. Using them, the team can decide
what features need to be included and how these features should work. I cover
user stories and scenarios in Chapter 3.

The product manager’s job is to understand the product’s customers and
potential customers. PMs should therefore lead the development of user sce-
narios and stories, which should be based on knowledge of the area and of
the customer’s business. PMs should also take scenarios and stories suggested
by other team members back to customers to check that they reflect what the
target users of the product might actually do.

1.2.4 Product backlog management

In product development, it is important for the process to be driven by a
“product backlog.” A product backlog is a to-do list that sets out what has to
be done to complete the product development. The backlog is added to and
refined incrementally during the development process. I explain how product
backlogs are used in the Scrum method in Chapter 2.

The product manager plays a critical role as the authority on the product
backlog items that should take priority for development. PMs also help to
refine broad backlog items, such as “implement auto-save,” in more detail at
each project iteration. If suggestions for change are made, it is up to the PM to
decide whether or not the product backlog should be rearranged to prioritize
the suggested changes.

M01_SOME6349_01_GE_C01.indd 24 30/09/2020 15:49

 1.2 ■ Software product management 25

1.2.5 Acceptance testing

Acceptance testing is the process of verifying that a software release meets
the goals set out in the product roadmap and that the product is efficient and
reliable. Product managers should be involved in developing tests of the
product features that reflect how customers use the product. They may work
through usage scenarios to check that the product is ready to be released to
customers.

Acceptance tests are refined as the product is developed, and products must
pass these tests before being released to customers.

1.2.6 Customer testing

Customer testing involves taking a release of a product to existing and
potential customers and getting feedback from them on the product’s fea-
tures, its usability, and the fit of the product to their business. Product
managers are involved in selecting customers that might be interested in
taking part in the customer testing process and working with them during
that process. They have to ensure that the customer can use the product
and that the customer testing process collects useful information for the
development team.

1.2.7 User interface design

The user interface (UI) of a product is critical in the commercial acceptance
of a software product. Technically excellent products are unlikely to be com-
mercially successful if users find them difficult to use or if their UI is incom-
patible with other software that they use. UI design is challenging for small
development teams because most users are less technically skilled than soft-
ware developers. It is often difficult for developers to envision the problems
that users may have with a software product.

Product managers should understand user limitations and act as surrogate
users in their interactions with the development team. They should evaluate
UI features as they are developed to check that these features are not unneces-
sarily complex or force users to work in an unnatural way. PMs may arrange
for potential users to try out the software, comment on its UI, and assist with
designing error messages and a help system.

M01_SOME6349_01_GE_C01.indd 25 30/09/2020 15:49

26 Chapter 1 ■ Software Products

1.3 Product prototyping

Product prototyping is the process of developing an early version of a product
to test your ideas and to convince yourself and company funders that your
product has real market potential. You use a product prototype to check that
what you want to do is feasible and to demonstrate your software to poten-
tial customers and funders. Prototypes may also help you understand how to
organize and structure the final version of your product.

You may be able to write an inspiring product vision, but your potential
users can only really relate to your product when they see a working version
of your software. They can point out what they like and don’t like about it
and make suggestions for new features. Venture capitalists, whom you may
approach for funding, usually insist on seeing a product prototype before they
commit to supporting a startup company. The prototype plays a critical role in
convincing investors that your product has commercial potential.

A prototype may also help identify fundamental software components or
services and test technology. You may find that the technology you planned
to use is inadequate and that you have to revise your ideas on how to imple-
ment the software. For example, you may discover that the design you chose
for the prototype cannot handle the expected load on the system, so you have
to redesign the overall product architecture.

Building a prototype should be the first thing you do when developing
a software product. Your goal should be to have a working version of your
software that can be used to demonstrate its key features. A short develop-
ment cycle is critical; you should aim to have a demonstrable system up and
running in four to six weeks. Of course, you have to cut corners to do this, so
you may choose to ignore issues such as reliability and performance and work
with a rudimentary user interface.

Sometimes prototyping is a two-stage process:

1. Feasibility demonstration You create an executable system that dem-
onstrates the new ideas in your product. The goals at this stage are to
see whether your ideas actually work and to show funders and com-
pany management that your product features are better than those of
competitors.

2. Customer demonstration You take an existing prototype created to demon-
strate feasibility and extend it with your ideas for specific customer features
and how these can be realized. Before you develop a customer prototype,

M01_SOME6349_01_GE_C01.indd 26 30/09/2020 15:49

you need to do some user studies and have a clear idea of your potential
users and scenarios of use. I explain how to develop user personas and
usage scenarios in Chapter 3.

You should always use technology that you know and understand to develop
a prototype so that you don’t have to spend time learning a new language or
framework. You don’t need to design a robust software architecture. You may
leave out security features and checking code to ensure software reliability.
However, I recommend that, for prototypes, you should always use automated
testing and code management. These are covered in Chapters 9 and 10.

If you are developing software without an external customer, such as soft-
ware for a research group, it may be that a prototype system is all you need.
You can develop and refine the prototype as your understanding of the prob-
lem develops. However, as soon as you have external users of your software,
you should always think of your prototype as a “throw-away” system. The
inevitable compromises and shortcuts you make to speed up development
result in prototypes that become increasingly difficult to change and evolve
to include new features. Adding security and reliability may be practically
impossible.

K E Y P O I N T S

■■ Software products are software systems that include general functionality that is likely to be
useful to a wide range of customers.

■■ In product-based software engineering, the same company is responsible for deciding
on both the features that should be part of the product and the implementation of these
features.

■■ Software products may be delivered as stand-alone products running on the customer’s
computers, hybrid products, or service-based products. In hybrid products, some features
are implemented locally and others are accessed from the Internet. All features are remotely
accessed in service-based products.

■■ A product vision succinctly describes what is to be developed, who are the target customers
for the product, and why customers should buy the product you are developing.

■■ Domain experience, product experience, customer experience, and an experimental software
prototype may all contribute to the development of the product vision.

 Key points 27

M01_SOME6349_01_GE_C01.indd 27 30/09/2020 15:49

28 Chapter 1 ■ Software Products

R E C O M M E N D E D R E A D I N G

“What is Product Line Engineering?” This article and the two linked articles provide an overview
of software product line engineering and highlight the differences between product line
engineering and software product development. (Biglever Software, 2013)

http://www.productlineengineering.com/overview/what-is-ple.html

“Building Software Products vs Platforms” This blog post briefly explains the differences between
a software product and a software platform. (B. Algave, 2016)

https://blog.frogslayer.com/building-software-products-vs-platforms/

“Product Vision” This is an old article but an excellent summary of what is meant by a product
vision and why it is important. (J. Spolsky, 2002)

http://www.joelonsoftware.com/articles/JimHighsmithonProductVisi.html

Agile Product Management with Scrum I generally avoid recommending books on product
management as they are too detailed for most readers of this book. However, this book is worth
looking at because of its focus on software and its integration with the Scrum agile method
that I cover in Chapter 2. It’s a short book that includes a succinct introduction to product
management and discusses the creation of a product vision. (R. Pichler, 2010, Addison-Wesley)

The author’s blog also has articles on product management.

http://www.romanpichler.com/blog/romans-product-management-framework/

“What, Exactly, is a Product Manager?” This excellent blog post explains why it’s important that
product managers work at the intersection of business, technology, and users. (M. Eriksson, 2011)

http://www.mindtheproduct.com/2011/10/what-exactly-is-a-product-manager/

■■ Key responsibilities of product managers are to own the product vision, develop a product
roadmap, create user stories and scenarios, manage the product backlog, conduct customer
and acceptance testing, and design the user interface.

■■ Product managers work at the interface between the business, the software development
team, and the product customers. They facilitate communication among these groups.

■■ You should always develop a product prototype to refine your own ideas and to demonstrate
the planned product features to potential customers.

P R E S E N T A T I O N S , V I D E O S , A N D L I N K S

https://iansommerville.com/engineering-software-products/software-products

M01_SOME6349_01_GE_C01.indd 28 30/09/2020 15:49

http://www.productlineengineering.com/overview/what-is-ple.html
https://blog.frogslayer.com/building-software-products-vs-platforms/
http://www.joelonsoftware.com/articles/JimHighsmithonProductVisi.html
http://www.romanpichler.com/blog/romans-product-management-framework/
http://www.mindtheproduct.com/2011/10/what-exactly-is-a-product-manager/
https://iansommerville.com/engineering-software-products/software-products

 Exercises 29

E X E R C I S E S

 1.1. Briefly describe the fundamental differences between project-based and product-based
software engineering.

 1.2. What are three important differences between software products and software product
lines.

 1.3. Based on the example project vision for the iLearn system, identify the WHAT, WHO, and
WHY for that software product.

 1.4. Why do software product managers have to be generalists, with a range of skills, rather
than simply technical specialists?

 1.5. You are a software product manager for a company developing educational software
products based on scientific simulations. Explain why it is important to develop a product
roadmap so that final product releases are available in the first three months of the year.

 1.6. Why should you implement a prototype before you start developing a new
software product?

M01_SOME6349_01_GE_C01.indd 29 30/09/2020 15:49

Agile Software Engineering

Bringing a software product to the market quickly is critically important. This is
true for all types of products—from simple mobile apps to large-scale enterprise
products. If a product is released later than planned, a competitor may have
already captured the market or you may have missed a market window, such as
the beginning of the holiday season. Once users have committed to a product,
they are usually reluctant to change, even to a technically superior product.

Agile software engineering focuses on delivering functionality quickly,
responding to changing product specifications, and minimizing development
overheads. An “overhead” is any activity that doesn’t contribute directly to
rapid product delivery. Rapid development and delivery and the flexibility to
make changes quickly are fundamental requirements for product development.

A large number of “agile methods” have been developed. Each has its
adherents, who are often evangelical about the method’s benefits. In practice,
companies and individual development teams pick and choose agile tech-
niques that work for them and that are most appropriate for their size and the
type of product they are developing. There is no best agile method or tech-
nique. It depends on who is using the technique, the development team, and
the type of product being developed.

2.1 Agile methods

In the 1980s and early 1990s, there was a widespread view that the best way to
create good software was to use controlled and rigorous software development
processes. The processes included detailed project planning, requirements

2

M02_SOME6349_01_GE_C02.indd 30 27/09/2020 14:00

 2.1 ■ Agile methods 31

specification and analysis, the use of analysis and design methods supported
by software tools, and formal quality assurance. This view came from the soft-
ware engineering community that was responsible for developing large, long-
lived software systems such as aerospace and government systems. These
were “one-off” systems, based on the customer requirements.

This approach is sometimes called plan-driven development. It evolved to
support software engineering where large teams developed complex, long-
lifetime systems. Teams were often geographically dispersed and worked on
the software for long periods of time. An example of this type of software is
a control system for a modern aircraft. Developing an avionic system might
take five to ten years from initial specification to on-board deployment.

Plan-driven development involves significant overhead in planning,
designing, and documenting the system. This overhead is justifiable for criti-
cal systems where the work of several development teams must be coordi-
nated and different people may maintain and update the software during its
lifetime. Detailed documents describing the software requirements and design
are important when informal team communications are impossible.

If plan-driven development is used for small and medium-sized software
products, however, the overhead involved is so large that it dominates the
software development process. Too much time is spent writing documents
that may never be read rather than writing code. The system is specified
in detail before implementation begins. Specification errors, omissions, and
misunderstandings are often discovered only after a significant chunk of the
system has been implemented.

To fix these problems, developers have to redo work that they thought was
complete. As a consequence, it is practically impossible to deliver software
quickly and to respond rapidly to requests for changes to the delivered software.

Dissatisfaction with plan-driven software development led to the creation of
agile methods in the 1990s. These methods allowed the development team to
focus on the software itself, rather than on its design and documentation. Agile
methods deliver working software quickly to customers, who can then propose
new or different requirements for inclusion in later versions of the system. They
reduce process bureaucracy by avoiding work that has dubious long-term value
and eliminating documentation that will probably never be used.

The philosophy behind agile methods is reflected in the agile manifesto1
that was agreed on by the leading developers of these methods. Table 2.1
shows the key message in the agile manifesto.

1Retrieved from http://agilemanifesto.org/. Used with permission.

M02_SOME6349_01_GE_C02.indd 31 27/09/2020 14:00

http://agilemanifesto.org/

32 Chapter 2 ■ Agile Software Engineering

All agile methods are based on incremental development and delivery.
The best way to understand incremental development is to think of a software
product as a set of features. Each feature does something for the software user.
There might be a feature that allows data to be entered, a feature to search
the entered data, and a feature to format and display the data. Each software
increment should implement a small number of product features.

With incremental development, you delay decisions until you really need
to make them. You start by prioritizing the features so that the most impor-
tant features are implemented first. You don’t worry about the details of
all the features—you define only the details of the feature that you plan to
include in an increment. That feature is then implemented and delivered.
Users or surrogate users can try it out and provide feedback to the develop-
ment team. You then go on to define and implement the next feature of the
system.

I show this process in Figure 2.1, and I describe incremental development
activities in Table 2.2.

We are uncovering better ways of developing software by doing it and helping others to
do it. Through this work, we have come to value:

- individuals and interactions over processes and tools;
- working software over comprehensive documentation;
- customer collaboration over contract negotiation;
- responding to change over following a plan.

While there is value on the items on the right, we value the items on the left more.

Table 2.1 The agile manifesto

Figure 2.1 Incremental development

Product feature list

If all features are
complete, deliver
system release

Choose features to
be included in

increment

Refine feature
descriptions

Deliver system
increment

Integrate
feature into

system

Implement and
test feature

M02_SOME6349_01_GE_C02.indd 32 27/09/2020 14:00

 2.1 ■ Agile methods 33

Of course, reality doesn’t always match this simple model of feature
development. Sometimes an increment has to be devoted to developing an
infrastructure service, such as a database service, that is used by several
features; sometimes you need to plan the user interface so that you get a
consistent interface across features; and sometimes an increment has to
sort out problems, such as performance issues, that were discovered during
system testing.

All agile methods share a set of principles based on the agile manifesto,
so they have much in common. I summarize these agile principles in
Table 2.3.

Almost all software products are now developed with an agile approach.
Agile methods work for product engineering because software products are
usually stand-alone systems rather than systems composed of independent
subsystems. They are developed by co-located teams who can communicate
informally. The product manager can easily interact with the development
team. Consequently, there is no need for formal documents, meetings, and
cross-team communication.

Activity Description

Choose features to be included in an
increment

Using the list of features in the planned
product, select those features that can be
implemented in the next product increment.

Refine feature descriptions Add detail to the feature descriptions so
that the team members have a common
understanding of each feature and there is
sufficient detail to begin implementation.

Implement and test Implement the feature and develop automated
tests for that feature that show that its
behavior is consistent with its description.
I explain automated testing in Chapter 9.

Integrate feature and test Integrate the developed feature with the
existing system and test it to check that it
works in conjunction with other features.

Deliver system increment Deliver the system increment to the customer
or product manager for checking and
comments. If enough features have been
implemented, release a version of the system
for customer use.

Table 2.2 Incremental development activities

M02_SOME6349_01_GE_C02.indd 33 27/09/2020 14:00

34 Chapter 2 ■ Agile Software Engineering

Principle Description

Involve the customer Involve customers closely with the software
development team. Their role is to provide and
prioritize new system requirements and to evaluate
each increment of the system.

Embrace change Expect the features of the product and the details
of these features to change as the development
team and the product manager learn more about
the product. Adapt the software to cope with
changes as they are made.

Develop and deliver
incrementally

Always develop software products in increments.
Test and evaluate each increment as it is developed
and feed back required changes to the development
team.

Maintain simplicity Focus on simplicity in both the software being
developed and the development process. Wherever
possible, do what you can to eliminate complexity
from the system.

Focus on people, not the
development process

Trust the development team and do not expect
everyone to always do things in the same way.
Team members should be left to develop their
own ways of working without being limited by
prescriptive software processes.

Table 2.3 Agile development principles

2.2 Extreme Programming

The ideas underlying agile methods were developed by a number of different
people in the 1990s. However, the most influential work that has changed the
culture of software development was the development of Extreme Program-
ming (XP). The name was coined by Kent Beck in 1998 because the approach
pushed recognized good practice, such as iterative development, to “extreme”
levels. For example, regular integration, in which the work of all programmers
in a team is integrated and tested, is good software engineering practice. XP
advocates that changed software should be integrated several times per day,
as soon as the changes have been tested.

XP focused on new development techniques that were geared to rapid,
incremental software development, change, and delivery. Figure 2.2 shows
10 fundamental practices, proposed by the developers of Extreme Program-
ming, that characterize XP.

M02_SOME6349_01_GE_C02.indd 34 27/09/2020 14:00

 2.2 ■ Extreme Programming 35

The developers of XP claim that it is a holistic approach. All of these prac-
tices are essential. In reality, however, development teams pick and choose
the techniques that they find useful given their organizational culture and the
type of software they are writing. Table 2.4 describes XP practices that have
become part of mainstream software engineering, particularly for software
product development. The other XP practices shown in Figure 2.2 have been
less widely adopted but are used in some companies.

I cover these widely-used XP practices, in later chapters of the book. Incre-
mental planning and user stories are covered in Chapter 3, refactoring in
Chapter 8, test-driven development in Chapter 9, and continuous integration
and small releases in Chapter 10.

You may be surprised that “Simple design” is not on the list of popular XP
practices. The developers of XP suggested that the “YAGNI” (You Ain’t Gonna
Need It) principle should apply when designing software. You should include
only functionality that is requested, and you should not add extra code to cope
with situations anticipated by the developers. This sounds like a great idea.

Unfortunately, it ignores the fact that customers rarely understand system-wide
issues such as security and reliability. You need to design and implement software
to take these issues into account. This usually means including code to cope with
situations that customers are unlikely to foresee and describe in user stories.

Figure 2.2 Extreme Programming practices

Test-first
development

Refactoring

Pair
programming

Simple
design

On-site
customer

Sustainable
pace

Continuous
integration

Small
releases

Incremental
planning

Collective
ownership

Extreme
Programming

M02_SOME6349_01_GE_C02.indd 35 27/09/2020 14:00

36 Chapter 2 ■ Agile Software Engineering

Practices such as having an on-site customer and collective ownership of code
are good ideas. An on-site customer works with the team, proposes stories and
tests, and learns about the product. However, the reality is that customers and
surrogate customers such as product managers have many other things to do. It
is difficult for them to find the time to be fully embedded in a development team.

Collective ownership discourages the individual ownership of code, but it has
proved to be impractical in many companies. Specialists are needed for some
types of code. Some people may work part-time on a project and so cannot par-
ticipate in its “ownership.” Some team members may be psychologically unsuited
to this way of working and have no wish to “own” someone else’s code.

Practice Description

Incremental planning/ user
stories

There is no “grand plan” for the system. Instead,
what needs to be implemented (the requirements)
in each increment are established in discussions
with a customer representative. The requirements
are written as user stories. The stories to be
included in a release are determined by the time
available and their relative priority.

Small releases The minimal useful set of functionality that
provides business value is developed first.
Releases of the system are frequent and
incrementally add functionality to the previous
release.

Test-driven development Instead of writing code and then tests for that
code, developers write the tests first. This helps
clarify what the code should actually do and that
there is always a “tested” version of the code
available. An automated unit test framework is
used to run the tests after every change. New
code should not “break” code that has already
been implemented.

Continuous integration As soon as the work on a task is complete, it
is integrated into the whole system and a new
version of the system is created. All unit tests
from all developers are run automatically and
must be successful before the new version of the
system is accepted.

Refactoring Refactoring means improving the structure,
readability, efficiency, and security of a program.
All developers are expected to refactor the code as
soon as potential code improvements are found.
This keeps the code simple and maintainable.

Table 2.4 Widely adopted XP practices

M02_SOME6349_01_GE_C02.indd 36 27/09/2020 14:00

 2.3 ■ Scrum 37

In pair programming two developers create each code unit. It was proposed
by the inventors of XP because they believed the pair could learn from each
other and catch each other’s mistakes. They suggested that two people work-
ing together were more productive than two people working as individuals.
However, there is no hard evidence that pair programming is more produc-
tive than individual work. Many managers consider pair programming to be
unproductive because two people seem to be doing one job.

Working at a sustainable pace, with no overtime, is attractive in principle.
Team members should be more productive if they are not tired and stressed.
However, it is difficult to convince managers that this sustainable working
will help meet tight delivery deadlines.

Extreme programming considers management to be a collective team activ-
ity; normally, there is no designated project manager responsible for com-
municating with management and planning the work of the team. In fact,
software development is a business activity and so has to fit with broader
business concerns of financing, costs, schedules, hiring and managing staff,
and maintaining good customer relationships. This means that management
issues cannot simply be left to the development team. There needs to be
explicit management where a manager can take account of business needs
and priorities as well as technical issues.

2.3 Scrum

In any software business, managers need to know what is going on and
whether or not a software development project is likely to deliver the soft-
ware on time and within its budget. Traditionally, this involves drawing up a
project plan that shows a set of milestones (what will be achieved), deliver-
ables (what will be delivered by the team), and deadlines (when a milestone
will be reached). The “grand plan” for the project shows everything from
start to finish. Progress is assessed by comparing that plan with what has
been achieved.

The problem with up-front project planning is that it involves making
detailed decisions about the software long before implementation begins.
Inevitably things change. New requirements emerge, team members come
and go, business priorities evolve, and so on. Almost from the day they are
formulated, project plans have to change. Sometimes this means that “fin-
ished” work has to be redone. This is inefficient and often delays the final
delivery of the software.

M02_SOME6349_01_GE_C02.indd 37 27/09/2020 14:00

38 Chapter 2 ■ Agile Software Engineering

On this basis, the developers of agile methods argued that plan-based man-
agement is wasteful and unnecessary. It is better to plan incrementally so that
the plan can change in response to changing circumstances. At the start of
each development cycle, decisions are made on what features should be pri-
oritized, how these should be developed and what each team member should
do. Planning should be informal with minimal documentation and with no
designated project manager.

Unfortunately, this informal approach to management does not meet the
broader business need of progress tracking and assessment. Senior managers
do not have the time to become involved in detailed discussions with team
members. Managers want someone who can report on progress and take their
concerns and priorities back to the development team. They need to know
whether the software will be ready by the planned completion date, and they
need information to update their business plan for the product.

This requirement for a more proactive approach to agile project manage-
ment led to the development of Scrum. Unlike XP, Scrum is not based on a
set of technical practices. Rather, it is designed to provide a framework for
agile project organization with designated individuals (the ScrumMaster and
the Product Owner) who act as the interface between the development team
and the organization.

The developers of Scrum wanted to emphasize that these individuals were
not “traditional” project managers who have the authority to direct the team.
So they invented new Scrum terminology for both individuals and team activi-
ties (Table 2.5). You need to know this Scrum jargon to understand the Scrum
method.

Two key roles in Scrum are not part of other methods:

1. The Product Owner is responsible for ensuring that the development
team always focuses on the product they are building rather than
diverted to technically interesting but less relevant work. In product
development, the product manager should normally take on the Product
Owner role.

2. The ScrumMaster is a Scrum expert whose job is to guide the team in the
effective use of the Scrum method. The developers of Scrum emphasize
that the ScrumMaster is not a conventional project manager but is a coach
for the team. The ScrumMaster has the authority within the team on how
Scrum is used. However, in many companies that use Scrum, the Scrum-
Master also has some project management responsibilities.

M02_SOME6349_01_GE_C02.indd 38 27/09/2020 14:00

 2.3 ■ Scrum 39

The other Scrum term that may need explanation is “potentially shippable
product increment.” This means that the outcome of each sprint should be
product-quality code. It should be completely tested, documented, and, if
necessary, reviewed. Tests should be delivered with the code. There should
always be a high-quality system available that can be demonstrated to man-
agement or potential customers.

The Scrum process or sprint cycle is shown in Figure 2.3. The fundamental
idea underlying the Scrum process is that software should be developed in a
series of “sprints.” A sprint is a fixed-length (timeboxed) activity, with each sprint
normally lasting two to four weeks. During a sprint, the team has daily meetings
(Scrums) to review the work done so far and to agree on that day’s activities. The
“sprint backlog” is used to keep track of work that is to be done during that sprint.

Sprint planning is based on the product backlog, which is a list of all the
activities that have to be completed to finish the product being developed.
Before a new sprint starts, the product backlog is reviewed. The highest-priority

Scrum term Explanation

Product The software product that is being developed by the
Scrum team.

Product Owner A team member who is responsible for identifying product
features and attributes. The Product Owner reviews work
done and helps to test the product.

Product backlog A to-do list of items such as bugs, features, and product
improvements that the Scrum team has not yet completed.

Development team A small self-organizing team of five to eight people who
are responsible for developing the product.

Sprint A short period, typically two to four weeks, when a product
increment is developed.

Scrum A daily team meeting where progress is reviewed and work
to be done that day is discussed and agreed.

ScrumMaster A team coach who guides the team in the effective use of
Scrum.

Potentially shippable
product increment

The output of a sprint that is of high enough quality to be
deployed for customer use.

Velocity An estimate of how much work a team can do in a single
sprint.

Table 2.5 Scrum terminology

M02_SOME6349_01_GE_C02.indd 39 27/09/2020 14:00

40 Chapter 2 ■ Agile Software Engineering

items are selected for implementation in the next sprint. Team members work
together to plan the sprint by analyzing the selected items to create the sprint
backlog. This is a list of activities to be completed during the sprint.

During implementation, the team implements as many of the sprint backlog
items as they can in the fixed time period allowed for the sprint. Incomplete
items are returned to the product backlog. Sprints are never extended to finish
an incomplete item.

A sprint produces either a shippable product increment that can be deliv-
ered to customers or an internal deliverable. Internal deliverables, such as a
product prototype or an architectural design, provide information for future
sprints. If the sprint output is part of the final product, it should be complete.
Unless the team has to change the software functionality, it should not have
to do any more work on that software increment in future sprints.

On completion of a sprint, a review meeting is held involving all team mem-
bers. The team discusses what went well during the sprint, what problems arose,
and how the problems were tackled. Team members also reflect on the effective-
ness of the tools and methods used. The aim of this meeting is for the team to learn
from each other to avoid problems and to improve productivity in later sprints.

Figure 2.3 Scrum cycle

Scrum

Develop
software

Test
software

Select items
to implement

Plan
sprint

Sprint

Review
sprint

Review product
backlog

Product
backlog

Shippable
product increment

Sprint
backlog

Start

M02_SOME6349_01_GE_C02.indd 40 27/09/2020 14:00

 2.3 ■ Scrum 41

The key benefits that come from using Scrum relate to the product being
developed, the progress of the project, and the people involved (Figure 2.4).

Scrum has been very influential in the development of agile software engi-
neering. It provides a framework for “doing” software engineering without
prescribing the engineering techniques that should be used. However, Scrum
is prescriptive in defining roles and the Scrum process. In The Scrum Guide2,
the “keepers” of the Scrum method state:

Scrum’s roles, artefacts, events, and rules are immutable and although
implementing only parts of Scrum is possible, the result is not Scrum.
Scrum exists only in its entirety and functions well as a container for
other techniques, methodologies, and practices.

That is, they believe you should not pick and choose a subset of Scrum
practices. Rather, you should take the whole of the method on board. It seems
to me that this inflexibility contradicts the fundamental agile principle that
individuals and interactions should be preferred over processes and tools. This
principle suggests that individuals should be able to adapt and modify Scrum
to suit their circumstances.

In some circumstances, I think it makes sense to use some of the ideas from
Scrum without strictly following the method or defining the roles as exactly
envisaged in Scrum. In general, “pure Scrum” with its various roles can’t

2The Scrum Guide This definitive guide to the Scrum method defines all the Scrum roles and
activities. (K. Schwaber and J. Sutherland, 2013).

Figure 2.4 The top five benefits of using Scrum

Product

Progress People

Unstable require-
ments do not hold
up progress.

The product is broken
down into a set of
understandable chunks
that stakeholders can
relate to.

Customers see
on-time delivery of
increments and gain
feedback on how the
product works.

Team communication
is improved because
everyone can see
everything.

Scrum
benefits

Trust between
customers and
developers is
established and a
positive culture is
created.

M02_SOME6349_01_GE_C02.indd 41 27/09/2020 14:00

42 Chapter 2 ■ Agile Software Engineering

be used by teams with fewer than five people. So, if you are working with a
smaller development team, you have to modify the method.

Small software development teams are the norm in startups, where the
whole company may be the development team. They are also common in
educational and research settings, where teams develop software as part of
their learning, and in larger manufacturing companies, where software devel-
opment is part of a broader product development process.

I think that motivated teams should make their own decisions about how to
use Scrum or a Scrum-like process. However, I recommend that three impor-
tant features of Scrum should be part of any product development process:
product backlogs, timeboxed sprints, and self-organizing teams.

2.3.1 Product backlogs

The product backlog is a list of what needs to be done to complete the devel-
opment of the product. The items on this list are called product backlog items
(PBIs). The product backlog may include a variety of different items such
as product features to be implemented, user requests, essential development
activities, and desirable engineering improvements. The product backlog
should always be prioritized so that the items that will be implemented first
are at the top of the list.

Product backlog items are initially described in broad terms without much
detail. For example, the items shown in Table 2.6 might be included in the
product backlog for a version of the iLearn system, which I introduced in
Chapter 1. In Chapter 3 I explain how system features can be identified from
a product vision. These then become PBIs. I also explain how user stories can
be used to identify PBIs.

1. As a teacher, I want to be able to configure the group of tools that are available to
individual classes. (feature)

2. As a parent, I want to be able to view my children’s work and the assessments made
by their teachers. (feature)

3. As a teacher of young children, I want a pictorial interface for children with limited
reading ability. (user request)

4. Establish criteria for the assessment of open source software that might be used as a
basis for parts of this system. (development activity)

5. Refactor user interface code to improve understandability and performance.
(engineering improvement)

6. Implement encryption for all personal user data. (engineering improvement)

Table 2.6 Examples of product backlog items

M02_SOME6349_01_GE_C02.indd 42 27/09/2020 14:00

 2.3 ■ Scrum 43

Table 2.6 shows different types of product backlog items. The first three
items are user stories that are related to features of the product that have to
be implemented. The fourth item is a team activity. The team must spend
time deciding how to select open-source software that may be used in later
increments. This type of activity should be specifically accounted for as a PBI
rather than taken as an implicit activity that takes up team members’ time. The
last two items are concerned with engineering improvements to the software.
These don’t lead to new software functionality.

PBIs may be specified at a high level and the team decides how to imple-
ment these items. For example, the development team is best placed to decide
how to refactor code for efficiency and understandability. It does not make
sense to refine this item in more detail at the start of a sprint. However, high-
level feature definitions usually need refinement so that team members have
a clear idea of what is required and can estimate the work involved.

Items in the product backlog are considered to be in one of three states, as
shown in Table 2.7. The product backlog is continually changed and extended
during the project as new items are added and items in one state are analyzed
and moved to a more refined state.

A critical part of the Scrum agile process is the product backlog review,
which should be the first item in the sprint planning process. In this review,
the product backlog is analyzed and backlog items are prioritized and refined.
Backlog reviews may also take place during sprints as the team learns more
about the system. Team members may modify or refine existing backlog items
or add new items to be implemented in a later sprint. During a product backlog
review, items may be moved from one state to another.

Heading Description

Ready for consideration These are high-level ideas and feature descriptions that
will be considered for inclusion in the product. They are
tentative so may radically change or may not be included
in the final product.

Ready for refinement The team has agreed that this is an important item
that should be implemented as part of the current
development. There is a reasonably clear definition of
what is required. However, work is needed to understand
and refine the item.

Ready for implementation The PBI has enough detail for the team to estimate the
effort involved and to implement the item. Dependencies
on other items have been identified.

Table 2.7 Product backlog item states

M02_SOME6349_01_GE_C02.indd 43 27/09/2020 14:00

44 Chapter 2 ■ Agile Software Engineering

Figure 2.5 shows the four operations that may modify the product backlog. In
this example, backlog item 1 has been split into two items, items 2 and 3 have
been estimated, items 4 and 5 have been re-prioritized, and item 6 has been added.
Notice that the new item 6 has a higher priority than existing items 4 and 5.

The Scrum community sometimes uses the term “backlog grooming” to
cover these four activities:

1. Refinement Existing PBIs are analyzed and refined to create more detailed
PBIs. This may also lead to the creation of new backlog items.

2. Estimation The team estimates the amount of work required to implement
a PBI and adds this assessment to each analyzed PBI.

3. Creation New items are added to the backlog. These may be new features
suggested by the product manager, required feature changes, engineering
improvements, or process activities such as the assessment of develop-
ment tools that might be used.

4. Prioritization The PBIs are reordered to take new information and
changed circumstances into account.

Backlog prioritization is a whole-team activity in which decisions are made
on which items to work on during a sprint. Input from product managers is
essential because they should know about customer needs and priorities. The

Figure 2.5 Product backlog activities

PBI 1

PBI 2

PBI 3

PBI 5

PBI 4

PRODUCT BACKLOG

Refinement

Estimation

PBI 4

PBI 1.1

PBI 1.2

PBI 3E

PBI 2E

Creation

Prioritization

PBI 6

PBI 5

REVISED
PRODUCT BACKLOG

M02_SOME6349_01_GE_C02.indd 44 27/09/2020 14:00

 2.3 ■ Scrum 45

highest-priority items are refined by the development team to create a “sprint
backlog,” which is a list of more detailed implementation items. In situations
such as speculative product development or research system development,
where there is no specified product owner, the team should collectively pri-
oritize the items.

Items that are ready for implementation should always have an associated
estimate of how much effort is needed to implement them. Estimates are
essential for sprint planning because a team uses them to decide how much
work they can take on for an individual sprint. This effort estimate is an input
to the prioritization activity. Sometimes it makes sense to place a higher prior-
ity on the items that deliver the most value for the least effort.

PBI estimates provide an indication of the effort required to complete each
item. Two metrics are commonly used:

1. Effort required The amount of effort may be expressed in person-hours
or person-days—that is, the number of hours or days it would take one
person to implement that PBI. This is not the same as calendar time. Sev-
eral people may work on an item, which may shorten the calendar time
required. Alternatively, a developer may have other responsibilities that
prevent full-time work on a project. Then the calendar time required is
longer than the effort estimate.

2. Story points Story points are an arbitrary estimate of the effort involved
in implementing a PBI, taking into account the size of the task, its com-
plexity, the technology that may be required, and the “unknown” charac-
teristics of the work. Story points were derived originally by comparing
user stories, but they can be used for estimating any kind of PBI. Story
points are estimated relatively. The team agrees on the story points for
a baseline task. Other tasks are then estimated by comparison with this
baseline—for example, more or less complex, larger or smaller, and so
on. The advantage of story points is that they are more abstract than
effort required because all story points should be the same, irrespective
of individual abilities.

Effort estimation is hard, especially at the beginning of a project when
a team has little or no previous experience with this type of work or when
technologies new to the team are used. Estimates are based on the subjective
judgment of the team members, and initial estimates are inevitably wrong.
Estimates usually improve, however, as the team gains experience with the
product and its development process.

M02_SOME6349_01_GE_C02.indd 45 27/09/2020 14:00

46 Chapter 2 ■ Agile Software Engineering

The Scrum method recommends a team-based estimation approach called
“Planning Poker,” which I don’t go into here. The rationale is that teams
should be able to make better estimates than individuals. However, there is
no convincing empirical evidence showing that collective estimation is better
than estimates made by experienced, individual developers.

After a number of sprints have been completed, it becomes possible for a
team to estimate its “velocity.” Simplistically, a team’s velocity is the sum of
the size estimates of the items that have been completed during a fixed-time
sprint. For example, assume that PBIs are estimated in story points and, in
consecutive sprints, the team implements 17, 14, 16, and 19 story points. The
team’s velocity is therefore between 16 and 17 story points per sprint.

Velocity is used to decide how many PBIs a team can realistically commit
to in each sprint. In the above example, the team should commit to about 17
story points. Velocity may also be used as a measure of productivity. Teams
should try to refine how they work so that their velocity improves over the
course of a project.

The product backlog is a shared, “living” document that is regularly
updated during product development. It is usually too large to fit on a white-
board, so it makes sense to maintain it as a shared digital document. Several
specialized tools that support Scrum include facilities to share and revise
product backlogs. Some companies may decide to buy these tools for their
software developers.

Small companies or groups with limited resources can use a shared docu-
ment system such as Office 365 or Google docs. These low-cost systems don’t
require new software to be bought and installed. If you are starting out using
product backlogs in your development process, I recommend this general
approach to gain experience before you decide whether you need specialized
tools for backlog management.

2.3.2 Timeboxed sprints

A Scrum concept that is useful in any agile development process is timeboxed
sprints. Timeboxing means that a fixed time is allocated for completing an
activity. At the end of the timebox, work on the activity stops whether or not
the planned work has been completed. Sprints are short activities (one to four
weeks) and take place between defined start and end dates. During a sprint, the
team works on the items from the product backlog. The product is therefore
developed in a series of sprints, each of which delivers an increment of the
product or supporting software.

M02_SOME6349_01_GE_C02.indd 46 27/09/2020 14:00

 2.3 ■ Scrum 47

Incremental development is a fundamental part of all agile methods, and I
think Scrum has got it right in insisting that the time spent on each increment
should be the same. In Figure 2.6, I show three important benefits that arise
from using timeboxed sprints.

Every sprint involves three fundamental activities:

1. Sprint planning Work items to be completed during that sprint are selected
and, if necessary, refined to create a sprint backlog. This should not last
more than a day at the beginning of the sprint.

2. Sprint execution The team works to implement the sprint backlog items
that have been chosen for that sprint. If it is impossible to complete all of
the sprint backlog items, the time for the sprint is not extended. Rather,
the unfinished items are returned to the product backlog and queued for
a future sprint.

3. Sprint reviewing The work done during the sprint is reviewed by the team
and (possibly) external stakeholders. The team reflects on what went well
and what went wrong during the sprint, with a view to improving the
work process.

Figure 2.7 shows the cycle of these activities and a more detailed break-
down of sprint execution. The sprint backlog is created during the planning
process and drives the development activities when the sprint is executed.

Figure 2.6 Benefits of using timeboxed sprints

Demonstrable progress

Problem discovery Work planning

There is a tangible output (usually a software
demonstrator) that can be delivered at the
end of every sprint.

If errors and omissions are
discovered, the rework
required is limited to the
duration of a sprint.

The team develops an under-
standing of how much work
they can do in a fixed time
period.

Time-
boxing
benefits

M02_SOME6349_01_GE_C02.indd 47 27/09/2020 14:00

48 Chapter 2 ■ Agile Software Engineering

Each sprint should start with a planning meeting at which team members col-
lectively decide on the PBIs to be implemented during the sprint. The inputs to this
activity are the product backlog items that are ready for implementation and infor-
mation from the Product Owner about which of these PBIs has the highest priority.

When planning a sprint, the team do three things:

■■ agree on a sprint goal;

■■ decide on the list of items from the product backlog that should be
implemented;

■■ create a sprint backlog, a more detailed version of the product backlog that
records the work to be done during the sprint.

The sprint goal is a succinct statement of what the team plans to achieve dur-
ing a sprint. It could be the implementation of a product feature, the development
of some essential product infrastructure, or the improvement of some product
attribute, such as its performance. It should be possible to decide objectively
whether or not the goal has been achieved by the end of the sprint. Figure 2.8
shows the three types of sprint goals and gives an example of each type.

Functional sprint goals relate to the implementation of system features
for end-users. Performance and reliability goals relate to improvements in
the performance, efficiency, reliability, and security of the system. Support
goals cover ancillary activities such as developing infrastructure software or
designing the system architecture.

Figure 2.7 Sprint activities

Sprint
planning

Sprint
review

Sprint
backlog

Scrum

Develop
software

Integrate
Sprint
backlog

Sprint
execution

M02_SOME6349_01_GE_C02.indd 48 27/09/2020 14:00

 2.3 ■ Scrum 49

Figure 2.8 Sprint goals

Functional

Support Performance and reliability

Implement user roles so that users can select
their role when they log in to the system.

Develop analytics that
maintain information about
the time users spend using
each feature of the system.

Ensure that the login response time is
less than 10 seconds for all users where
there are up to 2000 simultaneous login
connections.

Sprint
goals

You should always consider the highest-priority items on the product back-
log when deciding on a sprint goal. The team chooses these items for implemen-
tation at the same time as the sprint goal is being set. It makes sense to choose
a coherent set of high-priority items that are consistent with the sprint goal.
Sometimes items of lower priority in the product backlog are chosen because
they are closely related to other items that are part of the overall sprint goal.

As a general rule, the sprint goal should not be changed during the sprint.
Sometimes, however, the sprint goal has to be changed if unexpected prob-
lems are discovered or if the team finds a way to implement a feature more
quickly than originally estimated. In these cases, the scope of the goal may
be reduced or extended.

Once a sprint goal has been established, the team should discuss and decide
on a sprint plan. As I explained, PBIs should have an associated effort estimate,
which is a critical input to the sprint planning process. It’s important that a team
does not try to implement too many items during the sprint. Overcommitment
may make it impossible to achieve the sprint goal.

The velocity of the team is another important input to the sprint planning
process. The velocity reflects how much work the team can normally cover
in a sprint. You may estimate story points as I have explained, where the
team’s velocity is the number of story points it can normally implement in
a two-week or four-week sprint. This approach obviously makes sense for a
team that has a stable velocity.

A team’s velocity might be unstable, however, which means that the
number of PBIs completed varies from one sprint to another. Velocity may

M02_SOME6349_01_GE_C02.indd 49 27/09/2020 14:00

50 Chapter 2 ■ Agile Software Engineering

be unstable if the team membership changes, if easier items are assigned
a higher priority than items that are harder to implement, or if a team
includes inexperienced members who improve as the project progresses.
If a team’s velocity is unstable or unknown, then you have to take a more
intuitive approach to choosing the number of PBIs to be implemented dur-
ing a sprint.

The sprint backlog is a list of work items to be completed during the
sprint. Sometimes, a PBI can be transferred directly to the sprint backlog.
However, the team normally breaks down each PBI into smaller tasks that
are added to the sprint backlog. All team members then discuss how these
tasks will be allocated. Each task should have a relatively short duration—
one or two days at most—so that the team can assess its progress during
the daily sprint meeting. The sprint backlog should be much shorter than
the product backlog, so it can be maintained on a shared whiteboard. The
whole team can see what items are to be implemented and what items have
been completed.

The focus of a sprint is the development of product features or infrastruc-
ture and the team works to create the planned software increment. To facili-
tate cooperation, team members coordinate their work every day in a short
meeting called a scrum (Table 2.8). The Scrum method is named after these
meetings, which are an essential part of the method. They are a way for teams
to communicate—nothing like scrums in the game of rugby.

The Scrum method does not include specific technical development prac-
tices; the team may use any agile practices they think are appropriate. Some
teams like pair programming; others prefer that members work individually.
However, I recommend that two practices always be used in code develop-
ment sprints:

A scrum is a short, daily meeting that is usually held at the beginning of the day. During
a scrum, all team members share information, describe their progress since the previous
day’s scrum, and present problems that have arisen and plans for the coming day. This
means that everyone on the team knows what is going on and, if problems arise, can
re-plan short-term work to cope with them.

Scrum meetings should be short and focused. To dissuade team members from getting
involved in long discussions, scrums are sometimes organized as “stand-up” meetings
where there are no chairs in the meeting room.

During a scrum, the sprint backlog is reviewed. Completed items are removed from it.
New items may be added to the backlog as new information emerges. The team then
decides who should work on sprint backlog items that day.

Table 2.8 Scrums

M02_SOME6349_01_GE_C02.indd 50 27/09/2020 14:00

 2.3 ■ Scrum 51

1. Test automation As far as possible, product testing should be automated.
You should develop a suite of executable tests that can be run at any time.
I explain how to do this in Chapter 9.

2. Continuous integration Whenever anyone makes changes to the software
components they are developing, these components should be immedi-
ately integrated with other components to create a system. This system
should then be tested to check for unanticipated component interaction
problems. I explain continuous integration in Chapter 10.

The aim of a sprint is to develop a “potentially shippable product incre-
ment.” Of course, the software will not necessarily be released to customers,
but it should not require further work before it can be released. This means
different things for different types of software, so it is important that a team
establish a “definition of done,” which specifies what has to be completed for
code that is developed during a sprint.

For example, for a software product that is being developed for external
customers, the team may create a checklist that applies to all the software that
is being developed. Table 2.9 is an example of a checklist that can be used to
judge the completeness of an implemented feature.

If it is not possible to complete all items on this checklist during a sprint,
the unfinished items should be added to the product backlog for future imple-
mentation. The sprint should never be extended to complete unfinished items.

State Description

Reviewed The code has been reviewed by another team member who has
checked that it meets agreed coding standards, is understandable,
includes appropriate comments, and has been refactored if
necessary.

Unit tested All unit tests have been run automatically and all tests have
executed successfully.

Integrated The code has been integrated with the project codebase and no
integration errors have been reported.

Integration tested All integration tests have been run automatically and all tests have
been executed successfully.

Accepted Acceptance tests have been run if appropriate and the Product
Owner or the development team has confirmed that the product
backlog item has been completed.

Table 2.9 Code completeness checklist

M02_SOME6349_01_GE_C02.indd 51 27/09/2020 14:00

52 Chapter 2 ■ Agile Software Engineering

At the end of each sprint, there is a review meeting that involves the
whole team. This meeting has three purposes. First, it reviews whether or
not the sprint has met its goal. Second, it sets out any new problems and
issues that have emerged during the sprint. Finally, it is a way for a team
to reflect on how they can improve the way they work. Members discuss
what has gone well, what has gone badly, and what improvements could
be made.

The review may involve external stakeholders as well as the development
team. The team should be honest about what has and hasn’t been achieved
during the sprint so that the output of the review is a definitive assessment
of the state of the product being developed. If items are unfinished or if new
items have been identified, these should be added to the product backlog. The
Product Owner has the ultimate authority to decide whether or not the goal of
the sprint has been achieved. They should confirm that the implementation of
the selected product backlog items is complete.

An important part of a sprint review is a process review, in which the team
reflects on its own way of working and how Scrum has been used. The aim
of a process review is to identify ways to improve and to discuss how to use
Scrum more productively. Over the course of a development process, a Scrum
team should try to continually improve its effectiveness.

During the review, the team may discuss communication breakdowns, good
and bad experiences with tools and the development environment, technical
practices that have been adopted, reusable software and libraries that have
been discovered, and other issues. If problems have been identified, the team
should discuss how they should be addressed in future sprints. For example,
a decision may be made to investigate alternative tools to those being used by
the team. If aspects of the work have been successful, the team may explicitly
schedule time so that experience can be shared and good practice adopted
across the team.

2.3.3 Self-organizing teams

A fundamental principle of all agile development methods is that the soft-
ware development team should be self-organizing. Self-organizing teams
don’t have a project manager who assigns tasks and makes decisions for
the team. Rather, as shown in Figure 2.9, they make their own decisions.
Self-organizing teams work by discussing issues and making decisions by
consensus.

M02_SOME6349_01_GE_C02.indd 52 27/09/2020 14:00

 2.3 ■ Scrum 53

The ideal Scrum team size is between five and eight people—large enough
to be diverse yet small enough to communicate informally and effectively and
to agree on the priorities of the team. Because teams have to tackle diverse
tasks, it’s important to have a range of expertise in a Scrum team such as
networking, user experience, database design and so on.

In reality, it may not be possible to form ideal teams. In a non-commercial
setting such as a university, teams are smaller and made up of people who
have largely the same skill set. There is a worldwide shortage of software
engineers, so it is sometimes impossible to find people with the right mix of
skills and experience. A team may change during a project as people leave
and new members are hired. Some team members may work part-time or
from home.

The advantage of an effective self-organizing team is that it can be cohe-
sive and can adapt to change. Because the team rather than individuals takes
responsibility for the work, the team can cope with people leaving and joining
the group. Good team communication means that team members inevitably
learn something about each other’s areas. They can therefore compensate, to
some extent, when people leave the team.

In a managed team, the project manager coordinates the work. Manag-
ers look at the work to be done and assign tasks to team members. Project
managers have to arrange things so that work is not delayed because one
team member is waiting for others to finish their work. They have to tell all
team members about problems and other factors that may delay the work.
Team members are not encouraged to take responsibility for coordination
and communication.

In a self-organizing team, the team itself has to put in place ways to coor-
dinate the work and communicate issues to all team members. The developers
of Scrum assumed that team members are co-located. They work in the same

Figure 2.9 Self-organizing teams

Self-organizing
team

coordinates the work
of the team members
by discussing tasks and
reaching a consensus
on who should do what.

limits the involvement
of engineers in external
interactions with
management and
customers.

makes its own
decisions on schedule
and deliverables.

M02_SOME6349_01_GE_C02.indd 53 27/09/2020 14:01

54 Chapter 2 ■ Agile Software Engineering

office and can communicate informally. If one team member needs to know
something about what another has done, they simply talk to each other to find
out. There is no need for people to document their work for others to read.
Daily scrums mean that the team members know what’s been done and what
others are doing.

The Scrum approach embodies the essentials for coordination in a self-
managed team—namely, good informal communication and regular meetings
to ensure that everyone is up to speed. Team members explain their work
and are aware of team progress and possible risks that may affect the team.
However, there are practical reasons why informal verbal communication
may not always work:

1. Scrum assumes that the team is made up of full-time workers who share
a workspace. In reality, team members may be part-time and may work in
different places. For a student project, team members may take different
classes at different times, so it may be difficult to find a time slot where
all team members can meet.

2. Scrum assumes that all team members can attend a morning meeting to
coordinate the work for the day. This does not take into account that team
members may work flexible hours (for example, because of child care
responsibilities) or may work part-time on several projects. They are,
therefore, not available every morning.

If co-located working with daily meetings is impractical, then the team
must work out other ways to communicate. Messaging systems, such as Slack,
can be effective for informal communications. The benefit of messaging is that
all messages are recorded so that people can catch up on conversations that
they missed. Messaging does not have the immediacy of face-to-face com-
munication, but it is better than email or shared documents for coordination.

Talking to each other is the best way for team members to coordinate work
and to communicate what has gone well and what problems have arisen.
Daily meetings may be impossible, but agile teams really have to schedule
progress meetings regularly even if all members can’t attend or have to attend
virtually using teleconferencing. Members who can’t attend should submit a
short summary of their own progress so that the team can assess how well
the work is going.

All development teams, even those working in small startups or non-
commercial developments, have some external interactions. Some interac-
tions will help the team understand what customers require from the software

M02_SOME6349_01_GE_C02.indd 54 27/09/2020 14:01

 2.3 ■ Scrum 55

product being developed. Others will be with company management and other
parts of the company, such as human resources and marketing.

In a Scrum project, the ScrumMaster and the Product Owner should be
jointly responsible for managing interactions with people outside the team
(Figure 2.10).

Product Owners are responsible for interactions with current and poten-
tial customers as well as the company’s sales and marketing staff. Their job
is to understand what customers are looking for in a software product and
to identify possible barriers to the adoption and use of the product being
developed. They should understand the innovative features of the product
to establish how customers can benefit from them. Product Owners use this
knowledge to help develop the product backlog and to prioritize backlog items
for implementation.

The ScrumMaster role has a dual function. Part of the role is to work
closely with the team, coaching them in the use of Scrum and working on
the development of the product backlog. The Scrum Guide states that the
ScrumMaster should also work with people outside of the team to “remove
impediments”; that is, they should deal with external problems and queries
and represent the team to the wider organization. The intention is for the team
to be able to work on software development without external interference or
distractions.

Whether or not a team is using Scrum or some other agile approach, you
need to pay attention to these issues. In small teams, it may be impossible to
have different people take care of interactions with customers and interactions
with managers. The best approach may be for one person to take on both of
these roles and to work part-time on software development. The key require-
ment for “external communicators” is good communication and people skills

Figure 2.10 Managing external interactions

External
interactions

ScrumMaster Product Owner

Product-focused
external interactions

Team-focused
external interactions

M02_SOME6349_01_GE_C02.indd 55 27/09/2020 14:01

56 Chapter 2 ■ Agile Software Engineering

so that they can talk about the team’s work in a way that people outside the
team can understand and relate to.

The ScrumMaster is not a conventional project manager. The job is to help
team members use the Scrum method effectively and to ensure that they are
not distracted by external considerations. However, in all commercial proj-
ects, someone has to take on essential project management responsibilities
(Figure 2.11).

The Scrum Guide and many Scrum books (although not Rubin’s book that I’ve
included in Recommended Reading) simply ignore these issues. But they are a
reality of working in all but the smallest companies. A self-organizing team has
to appoint a team member to take on management tasks. Because of the need to
maintain continuity of communication with people outside of the group, sharing
the management tasks among team members is not a viable approach.

In response to this issue, Rubin suggests that it may sometimes be appropri-
ate for a project manager outside of the team to act for several Scrum teams.
I think this idea is unworkable for three reasons:

1. Small companies may not have the resources to support dedicated project
managers.

Figure 2.11 Project management responsibilities

Budget
Schedule

Risks
Problems
Progress

Finance
Compliance
Procurement

Liaison

Vacations
Absence

Work quality
Reviewing

Hiring

Project
managementAdministration People

Reporting

M02_SOME6349_01_GE_C02.indd 56 27/09/2020 14:01

 Key points 57

K E Y P O I N T S

■■ The best way to develop software products is to use agile software engineering methods that
are geared to rapid product development and delivery.

■■ Agile methods are based on iterative development and the minimization of overheads during
the development process.

■■ Extreme Programming (XP) is an influential agile method that introduced agile development
practices such as user stories, test-first development, and continuous integration. These are
now mainstream software development activities.

■■ Scrum is an agile method that focuses on agile planning and management. Unlike XP, it
does not define the engineering practices to be used. The development team may use any
technical practices they consider appropriate for the product being developed.

■■ In Scrum, work to be done is maintained in a product backlog, a list of work items to be
completed. Each increment of the software implements some of the work items from the
product backlog.

■■ Sprints are fixed-time activities (usually two to four weeks) in which a product increment is
developed. Increments should be potentially shippable; that is, they should not need further
work before they are delivered.

■■ A self-organizing team is a development team that organizes the work to be done by
discussion and agreement among team members.

■■ Scrum practices, such as the product backlog, sprints, and self-organizing teams, can be used
in any agile development process, even if other aspects of Scrum are not used.

2. Many project management tasks require detailed knowledge of a team’s
work. If a project manager is working across several teams, it may be
impossible to know the work of each team in detail.

3. Self-organizing teams are cohesive and tend to resent being told what to
do by people outside of the team. Members are liable to obstruct, rather
than support, an external project manager.

In my opinion it is unrealistic for the ScrumMaster role to exclude project
management responsibilities. ScrumMasters know the work going on and are
in by far the best position to provide accurate information and project plans
and progress.

M02_SOME6349_01_GE_C02.indd 57 27/09/2020 14:01

58 Chapter 2 ■ Agile Software Engineering

R E C O M M E N D E D R E A D I N G

Extreme Programming Explained This was the first book on XP and I think it’s still the best one.
It explains the approach from the perspective of one of its inventors, and his enthusiasm comes
through very clearly in the book. (K. Beck and C. Andres, Addison-Wesley, 2004)

Essential Scrum: A practical guide to the most popular agile process This is a comprehensive and
readable description of the 2011 version of the Scrum method. The diagrams are sometimes
overcomplicated and a bit difficult to understand, but it is the best book on Scrum I have seen.
(K. S. Rubin, Addison-Wesley, 2012)

The Scrum Guide This definitive guide to the Scrum method defines all the Scrum roles and
activities. (K. Schwaber and J. Sutherland, 2013)

http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf

“The Agile Mindset” This blog post argues for a flexible, pick-and-mix approach to Scrum practices
rather than the inflexible model proposed in The Scrum Guide. I generally agree with what the
author is saying here. (D. Thomas, 2014)

http://blog.scottlogic.com/2014/09/18/the-agile-mindset.html

“The Advantages and Disadvantages of Agile Scrum Software Development” An article by a
project management expert rather than a Scrum evangelist presents a balanced picture of the
advantages and disadvantages of Scrum. (S. de Sousa, undated)

http://www.my-project-management-expert.com/the-advantages-and-disadvantages-of-agile-
scrum-software-development.html

“A Criticism of Scrum” This tongue-in-cheek blog post sets out what the author really doesn’t like
about Scrum. I agree with some of his points; others I think are exaggerated. (A. Gray, 2015)

https://www.aaron-gray.com/a-criticism-of-scrum/

P R E S E N T A T I O N S , V I D E O S , A N D L I N K S

https://iansommerville.com/engineering-software-products/agile-software-engineering

M02_SOME6349_01_GE_C02.indd 58 27/09/2020 14:01

http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf
http://blog.scottlogic.com/2014/09/18/the-agile-mindset.html
http://www.my-project-management-expert.com/the-advantages-and-disadvantages-of-agile-scrum-software-development.html
http://www.my-project-management-expert.com/the-advantages-and-disadvantages-of-agile-scrum-software-development.html
https://www.aaron-gray.com/a-criticism-of-scrum/
https://iansommerville.com/engineering-software-products/agile-software-engineering

 Exercises 59

E X E R C I S E S

 2.1. Explain why it is important that software products are developed and delivered quickly.
Why is it sometimes sensible to deliver an unfinished product and then issue new versions
of that product after delivery?

 2.2. Explain why the fundamental objectives of agile software engineering are consistent with
the accelerated development and delivery of software products.

 2.3. Give three reasons why Extreme Programming, as envisaged by its developers, is not widely
used.

 2.4. You are developing a software product to help manage student admissions at a university.
Your agile development team suggests that they create a number of small releases that
potential customers can try and then provide feedback. Comment on this idea and suggest
why it may not be acceptable to the system’s users.

 2.5. Explain why the Product Owner plays an essential role in a Scrum development team. How
might a development team that is working in an environment where there are no external
customers (e.g., a student project team) reproduce this Product Owner role?

 2.6. Why is it is important that each sprint normally produces a potentially shippable product
increment? When might the team relax this rule and produce something that is not ready
to ship?

 2.7. Explain why estimating the effort required to complete a product backlog item using
person-hours or person-days may lead to significant variations between the estimated
effort and the actual effort.

 2.8. Why are daily scrums likely to reduce the time that is normally required for new team
members to become productive?

 2.9. One problem with self-organizing teams is that more experienced team members tend to
dominate discussions and therefore influence the team’s way of working. Suggest ways to
counteract this problem.

 2.10. Scrum is designed for use by a team of five to eight people working together to develop
a software product. What problems might arise if you try to use Scrum for student team
projects in which members work together to develop a program? What parts of Scrum
could be used in this situation?

M02_SOME6349_01_GE_C02.indd 59 27/09/2020 14:01

Features, Scenarios,
and Stories

Some software products are inspired. The developers of these products have
a vision of the software that they want to create. They don’t have a product
manager, they don’t do user surveys, they don’t collect and document require-
ments or model how users will interact with the system. They simply get on
with developing a prototype system. Some of the most successful software
products, such as Facebook, started like this.

However, the vast majority of software products that are solely based
on a developer’s inspiration are commercial failures. These products either
don’t meet a real user need or don’t fit with the ways in which users really
work. Inspiration is important but most successful products are based on an
understanding of business and user problems and user interaction. Even when
inspiration leads to many users adopting a product, continuing use depends
on its developers understanding how the software is used and new features
that users may want.

Apart from inspiration, there are three factors that drive the design of soft-
ware products:

1. Business and consumer needs that are not met by current products For
example, book and magazine publishers are moving to both online and
paper publication, yet few software products allow seamless conversion
from one medium to another.

2. Dissatisfaction with existing business or consumer software products For
example, many current software products are bloated with features that
are rarely used. New companies may decide to produce simpler products
in the same area that meet the needs of most users.

3

M03_SOME6349_01_GE_C03.indd 60 27/09/2020 14:01

 Chapter 3 ■ Features, Scenarios, and Stories 61

3. Changes in technology that make completely new types of products pos-
sible For example, as virtual reality (VR) technology matures and the
hardware gets cheaper, new products may exploit this opportunity.

As I explained in Chapter 1, software products are not developed to meet
the requirements of a specific client. Consequently, techniques that have been
developed for eliciting, documenting, and managing software requirements
aren’t used for product engineering. You don’t need to have a complete and
detailed requirements document as part of a software development contract.
There is no need for prolonged consultations when requirements change.
Product development is incremental and agile, so you can use less formal
ways of defining your product.

In the early stage of product development, rather than understanding the
requirements of a specific client, you are trying to understand what product
features will be useful to users and what they like and dislike about the prod-
ucts that they use. Briefly, a feature is a fragment of functionality, such as a
Print feature, a Change Background feature, a New Document feature, and
so on. Before you start programming a product, you should create a list of
features to be included in your product. This is your starting point for product
design and development.

It makes sense in any product development to spend time trying to under-
stand the potential users and customers of your product. A range of techniques
have been developed for understanding the ways that people work and use
software. These include user interviews, surveys, ethnography, and task anal-
ysis.1 Some of these techniques are expensive and unrealistic for small com-
panies. However, informal user analysis and discussions, which simply
involve asking users about their work, the software that they use, and its
strengths and weaknesses, are inexpensive and very valuable.

One problem with informal user studies for business products is that the
users simply may not want new software. For business products, the busi-
ness buys the product, but its employees are the users. These users may be
hostile to new products because they have to change their familiar way of
working or perhaps because increased automation may reduce the number of
jobs available. Business managers may suggest what they want from a new
software product, but this does not always reflect the needs or wishes of the
product’s users.

1I discuss techniques of user analysis to discover software requirements in my general software
engineering textbook, Software Engineering, 10th edition (Pearson Education, 2015).

M03_SOME6349_01_GE_C03.indd 61 27/09/2020 14:01

62 Chapter 3 ■ Features, Scenarios, and Stories

In this chapter, I assume that informal user consultations are possible.
I explain ways of representing users (personas) and communicating with
them and other product stakeholders. I focus on how short, natural language
descriptions (scenarios and stories) can be used to visualize and document
how users might interact with a software product.

Figure 3.1 shows that personas, scenarios, and user stories lead to features
that might be implemented in a software product.

If you look on the web, you can find a range of definitions of a “product
feature,” but I think of a feature as a fragment of functionality that implements
some user or system need. You access features through the user interface of
a product. For example, the editor that I used to write this book includes a
feature to create a “New Group,” in which a group is a set of documents that
is accessed as a pull-down menu.

A feature is something that the user needs or wants. You can write a user
story to make this explicit:

As an author I need a way to organize the text of the book that I’m writ-
ing into chapters and sections.

Using the New Group feature, you create a group for each chapter, and the
documents within that group are the sections of that chapter. This feature can
be described using a short, narrative, feature description:

The “New Group” command, activated by a menu choice or keyboard
shortcut, creates a named container for a set of documents and groups.

Alternatively, you can use a standard template where you define the feature
by its input, its functionality, its output, and how it is activated. Figure 3.2

Figure 3.1 From personas to features

Personas

Scenarios

Stories

Features

inspire

inspire

define

are-developed-into

M03_SOME6349_01_GE_C03.indd 62 27/09/2020 14:01

 Chapter 3 ■ Features, Scenarios, and Stories 63

shows the elements of the standard template, and Figure 3.3 shows how the
New Group feature can be defined using this template.

Features can be defined using the input/action/output model that I have
shown. However, system developers often need only a short feature descrip-
tion; then they fill in the feature details. This is especially true when the

Figure 3.2 Feature description

Input

Action

The input from
the user and
other sources

A description of
how the input data

are processed

Output

The output to the
user and the

system

Activation

How the feature
is activated by

the user

Feature name

Figure 3.3 The New Group feature description

Input

Action

The name of the
group chosen by

the user

A new container is
created with the
specified name

Output

Activation

Using the New Group
menu option or

keyboard shortcut

New Group

An empty document
container and an updated

list of documents that
includes the newly

created group

M03_SOME6349_01_GE_C03.indd 63 27/09/2020 14:01

64 Chapter 3 ■ Features, Scenarios, and Stories

feature is a “utility” feature that is commonly available in other products. For
example, the Cut and Paste feature is well known, so might be defined as:

Cut and Paste – any selected object can be cut or copied, then inserted
elsewhere into the document.

Sometimes all you need to say is that a Cut and Paste feature should be
included and then rely on the developer’s general understanding to implement
this.

Features are the fundamental elements of an agile method called Feature-
Driven Development (FDD). I have no experience with this method and have
not met anyone who uses it for product development, so I can’t comment on it
directly. One aspect of this approach that I have used, however, is its template
for feature description:

<action> the <result> <by|for|of|to> <object>

So, the New Group feature above could be described as:

Create the container for documents or groups

I show another example of this simple approach to feature description in
Section 3.4.2.

I return to the topic of features in Section 3.4 after I have described sce-
narios and user stories. You can use both of these narrative techniques for
deriving the list of features to be included in a system.

3.1 Personas

One of the first questions you should ask when developing a software product
is “Who are the target users for my product?” You need to have some under-
standing of your potential users in order to design features that they are likely
to find useful and to design a user interface that is suited to them.

Sometimes you know the users. If you are a software engineer developing
software tools for other engineers, then you understand, to some extent at least,
what they are likely to want. If you are designing a phone or tablet app for gen-
eral use, you may talk to friends and family to understand what potential users
may like or dislike. In those circumstances, you may be able to design using an

M03_SOME6349_01_GE_C03.indd 64 27/09/2020 14:01

 3.1 ■ Personas 65

intuitive idea of who the users are and what they can do. However, you should
be aware that your users are diverse and your own experience may not provide
a complete picture of what they might want and how they might work.

For some types of software products, you may not know much about the
background, skills, and experience of potential users. Individuals on the devel-
opment team may have their own ideas about the product users and their
capabilities. This can lead to product inconsistencies as these different views
are reflected in the software implementation. Ideally, the team should have
a shared vision of users, their skills, and their motivations for using the soft-
ware. Personas are one way of representing this shared vision.

Personas are about “imagined users,” character portraits of types of user
that you think might adopt your product. For example, if your product is
aimed at managing appointments for dentists, you might create a dentist per-
sona, a receptionist persona, and a patient persona. Personas of different types
of users help you imagine what these users may want to do with your software
and how they might use it. They also help you envisage difficulties that users
might have in understanding and using product features.

A persona should paint a picture of a type of product user. You should
describe the users’ backgrounds and why they might want to use your product.
You should also say something about their education and technical skills. This
helps you assess whether or not a software feature is likely to be useful and
understandable by typical product users.

An example of a persona that I wrote when designing the iLearn system,
described in Chapter 1, is shown in Table 3.1. This is the persona of a teacher
who is committed to digital learning and who believes that using digital
devices can enhance the overall learning process.

Jack, a primary school teacher

Jack, age 32, is a primary school (elementary school) teacher in Ullapool, a large coastal
village in the Scottish Highlands. He teaches children from ages 9 to 12. He was born in a
fishing community north of Ullapool, where his father runs a marine fuels supply business
and his mother is a community nurse. He has a degree in English from Glasgow University
and retrained as a teacher after several years working as a web content author for a large
leisure group.

Jack’s experience as a web developer means that he is confident in all aspects of digital
technology. He passionately believes that the effective use of digital technologies,
blended with face-to-face teaching, can enhance the learning experience for children. He
is particularly interested in using the iLearn system for project-based teaching, where
students work together across subject areas on a challenging topic.

Table 3.1 A persona for a primary school teacher

M03_SOME6349_01_GE_C03.indd 65 27/09/2020 14:01

66 Chapter 3 ■ Features, Scenarios, and Stories

There is no standard way of representing a persona; if you search the web,
you will find a number of different recommendations. Common features of
these suggestions are shown in Figure 3.4. The recommended aspects of a
persona description—namely, personalization, relevance, education, and job-
related—are explained in Table 3.2.

Many recommendations about what should be included in a persona sug-
gest describing the individual’s goals. I disagree because it’s impossible to pin
down what is meant by “goals.” Goals are a broad concept. Some people have
goals of self-improvement and learning; others have work-oriented goals of
career progression and promotion. For some people, goals are not related to
work. Their goals are simply to get through the day and earn enough so that
they can do the things outside of work that give them pleasure and satisfaction.

My experience is that trying to define “user goals” is not helpful. I have
found that most people don’t have clearly defined goals when they use soft-
ware. They may have been told to use the software as part of their job, they
may see the software as a way to do their work more effectively, or they may
find the software useful in organizing their life. Rather than try to set out
goals, I think it’s better to try to explain why the software might be useful and
to give examples of what potential users may want to do with it.

If your product is targeted at a specific group of users, you may need only
one or two personas to represent potential system users. For some products,
however, the user group may be very broad and you may think that a large
number of personas are needed. In fact, using many personas can make it
more difficult to design a coherent system because they inevitably overlap.

Figure 3.4 Persona descriptions

Personalization

Include personal
information about

the individual

Persona

Education

Include details of
their education
and experience

Job-related

Include details of
the individual’s

job

Include details of
their interest in

the product

Relevance

M03_SOME6349_01_GE_C03.indd 66 27/09/2020 14:01

 3.1 ■ Personas 67

In general, you don’t need more than five personas to help identify the key
features of a system.

Personas should be relatively short and easy to read. For the iLearn system,
we developed personas that we described in two or three paragraphs of text.
We found that these had enough information to be useful. Two of the personas
that we created are shown in Tables 3.3 and 3.4.

The persona in Table 3.3 represents users who do not have a technical
background. They simply want a system to provide support for administration.

Aspect Description

Personalization You should give them a name and say something about their
personal circumstances. It is sometimes helpful to use an
appropriate stock photograph to represent the person in the
persona. Some studies suggest that this helps project teams use
personas more effectively.

Job-related If your product is targeted at business, you should say something
about their job and (if necessary) what that job involves. For some
jobs, such as a teacher where readers are likely to be familiar with
the job, this may not be necessary.

Education You should describe their educational background and their level
of technical skills and experience. This is important, especially for
interface design.

Relevance If you can, you should say why they might be interested in using
the product and what they might want to do with it.

Table 3.2 Aspects of persona descriptions

Table 3.3 A persona for a history teacher

Emma, a history teacher

Emma, age 41, is a history teacher in a secondary school (high school) in Edinburgh. She
teaches students from ages 12 to 18. She was born in Cardiff in Wales, where both her
father and her mother were teachers. After completing a degree in history from Newcastle
University, she moved to Edinburgh to be with her partner and trained as a teacher.
She has two children, aged 6 and 8, who both attend the local primary school. She likes
to get home as early as she can to see her children, so often does lesson preparation,
administration, and marking from home.

Emma uses social media and the usual productivity applications to prepare her lessons,
but is not particularly interested in digital technologies. She hates the virtual learning
environment that is currently used in her school and avoids using it if she can. She
believes that face-to-face teaching is most effective. She might use the iLearn system
for administration and access to historical films and documents. However, she is not
interested in a blended digital/face-to-face approach to teaching.

M03_SOME6349_01_GE_C03.indd 67 27/09/2020 14:01

68 Chapter 3 ■ Features, Scenarios, and Stories

Elena’s persona in Table 3.4 represents technically skilled support staff who
may be responsible for setting up and configuring the iLearn software.

I haven’t included personas for the students who were intended to be the
ultimate end-users of the iLearn system. The reason is that we saw the iLearn
system as a platform product that should be configured to suit the preferences
and needs of individual schools and teachers. Students would use iLearn to
access tools. However, they would not use the configuration features that make
iLearn a unique system. Although we planned to include a standard set of appli-
cations with the system, we were driven by the belief that the best people to
create learning systems were teachers, supported by local technical staff.

Ideally, software development teams should be diverse, with people of dif-
ferent ages and genders. However, the reality is that software product devel-
opers are still, overwhelmingly, young men with a high level of technical skill.
Software users are more diverse, with varying levels of technical skill. Some
developers find it hard to appreciate the problems that users may have with
the software. An important benefit of personas is that they help the develop-
ment team members empathize with potential users of the software. Personas
are a tool that allows team members to “step into the users’ shoes.” Instead of
thinking about what they would do in a particular situation, they can imagine
how a persona would behave and react.

So, when you have an idea for a feature, you can ask “Would this persona
be interested in this feature?” and “How would that persona access and use
the feature?”. Personas can help you check your ideas to make sure that you
are not including product features that aren’t really needed. They help you to
avoid making unwarranted assumptions, based on your own knowledge, and
designing an overcomplicated or irrelevant product.

Table 3.4 A persona for an IT technician

Elena, a school IT technician

Elena, age 28, is a senior IT technician in a large secondary school (high school) in
Glasgow with over 2000 students. Originally from Poland, she has a diploma in electronics
from Potsdam University. She moved to Scotland in 2011 after being unemployed for a
year after graduation. She has a Scottish partner, no children, and hopes to develop her
career in Scotland. She was originally appointed as a junior technician but was promoted,
in 2014, to a senior post responsible for all the school computers.

Although not involved directly in teaching, Elena is often called on to help in computer
science classes. She is a competent Python programmer and is a “power user” of digital
technologies. She has a long-term career goal of becoming a technical expert in digital
learning technologies and being involved in their development. She wants to become an
expert in the iLearn system and sees it as an experimental platform for supporting new
uses for digital learning.

M03_SOME6349_01_GE_C03.indd 68 27/09/2020 14:01

 3.2 ■ Scenarios 69

Personas should be based on an understanding of the potential product
users: their jobs, their backgrounds, and their aspirations. You should study
and survey potential users to understand what they want and how they might
use the product. From these data, you can abstract the essential information
about the different types of product users and then use this as a basis for creat-
ing personas. These personas should then be cross-checked against the user
data to make sure that they reflect typical product users.

It may be possible to study the users when your product is a development of
an existing product. For new products, however, you may find it impractical
to carry out detailed user surveys. You may not have easy access to potential
users. You may not have the resources to carry out user surveys, and you may
want to keep your product confidential until it is ready to launch.

If you know nothing about an area, you can’t develop reliable personas, so
you need to do some user research before you start. This does not have to be
a formal or prolonged process. You may know people working in an area and
they might be able to help you meet their colleagues to discuss your ideas. For
example, my daughter is a teacher and she helped arrange lunch with a group
of her colleagues to discuss how they use digital technologies. This helped
with both persona and scenario development.

Personas that are developed on the basis of limited user information are
called proto-personas. Proto-personas may be created as a collective team
exercise using whatever information is available about potential product
users. They can never be as accurate as personas developed from detailed
user studies, but they are better than nothing. They represent the product users
as seen by the development team, and they allow the developers to build a
common understanding of the potential product users.

3.2 Scenarios

As a product developer, your aim should be to discover the product features
that will tempt users to adopt your product rather than competing software.
There is no easy way to define the “best” set of product features. You have to
use your own judgement about what to include in your product. To help select
and design features, I recommend that you invent scenarios to imagine how
users could interact with the product that you are designing.

A scenario is a narrative that describes a situation in which a user is using
your product’s features to do something that they want to do. The scenario
should briefly explain the user’s problem and present an imagined way that

M03_SOME6349_01_GE_C03.indd 69 27/09/2020 14:01

70 Chapter 3 ■ Features, Scenarios, and Stories

the problem might be solved. There is no need to include everything in the
scenario; it isn’t a detailed system specification.

Table 3.5 is an example scenario that shows how Jack, whose persona I
described in Section 3.2, might use the iLearn system.

From this description of how iLearn might be used for class projects, you
can see some of the key elements of a scenario (Figure 3.5) that may be
included to help you think about the product features that you need.

The most important elements of a scenario are:

1. A brief statement of the overall objective. In Jack’s scenario, shown in
Table 3.5, this is to support a class project on the fishing industry.

2. References to the persona involved (Jack) so that you can get information
about the capabilities and motivation of that user.

3. Information about what is involved in doing the activity. For example,
in Jack’s scenario, this involves gathering reminiscences from relatives,
accessing newspaper archives, and so on.

4. If appropriate, an explanation of problems that can’t be readily
addressed using the existing system. Young children don’t understand

Fishing in Ullapool

Jack is a primary school teacher in Ullapool, teaching P6 pupils. He has decided that a
class project should be focused around the fishing industry in the area, looking at the
history, development, and economic impact of fishing.

As part of this, students are asked to gather and share reminiscences from relatives,
use newspaper archives, and collect old photographs related to fishing and fishing
communities in the area. Pupils use an iLearn wiki to gather together fishing stories and
SCRAN (a history archive site) to access newspaper archives and photographs. However,
Jack also needs a photo-sharing site as he wants students to take and comment on
each others’ photos and to upload scans of old photographs that they may have in their
families. He needs to be able to moderate posts with photos before they are shared,
because pre-teen children can’t understand copyright and privacy issues.

Jack sends an email to a primary school teachers’ group to see if anyone can recommend
an appropriate system. Two teachers reply and both suggest that he use KidsTakePics, a
photo-sharing site that allows teachers to check and moderate content. As KidsTakePics
is not integrated with the iLearn authentication service, he sets up a teacher and a class
account with KidsTakePics.

He uses the the iLearn setup service to add KidsTakePics to the services seen by the
students in his class so that, when they log in, they can immediately use the system to
upload photos from their phones and class computers.

Table 3.5 Jack’s scenario: Using the iLearn system for class projects

M03_SOME6349_01_GE_C03.indd 70 27/09/2020 14:01

 3.2 ■ Scenarios 71

issues such as copyright and privacy, so photo sharing requires a site
that a teacher can moderate to make sure that published images are legal
and acceptable.

5. A description of one way that the identified problem might be addressed.
This may not always be included especially if technical knowledge is
needed to solve the problem. In Jack’s scenario, the preferred approach
is to use an external tool designed for school students.

The idea of using scenarios to support software engineering has been
around since the 1980s. Different types of scenarios have been proposed,
ranging from high-level scenarios like this one about Jack to more detailed
and specific scenarios that set out the steps involved in a user’s interaction
with a system. They are the basis for both use cases, which are extensively
used in object-oriented methods, and user stories, which are used in agile
methods. Scenarios are used in the design of requirements and system fea-
tures, in system testing, and in user interface design.

Narrative, high-level scenarios, like Jack’s scenario, are primarily a means
of facilitating communication and stimulating design creativity. They are
effective in communication because they are understandable and accessible
to users and to people responsible for funding and buying the system.2 Like
personas, they help developers to gain a shared understanding of the system
that they are creating. You should always be aware, however, that scenarios
are not specifications. They lack detail, they may be incomplete, and they may
not represent all types of user interactions.

2I presented some of the scenarios for the iLearn system to a government minister for educa-
tion. He commented that this was the first time he had ever attended a meeting on an IT system
where he actually understood what the system was supposed to do.

Figure 3.5 Elements of a scenario description

Scenario name Personas of actors
involved in the scenarios

Overall objective

What’s involved
in reaching the objective

Problem that can’t be addressed
by existing system

Possible ways that the problem
could be tackled

Scenario
description

M03_SOME6349_01_GE_C03.indd 71 27/09/2020 14:01

72 Chapter 3 ■ Features, Scenarios, and Stories

Some people recommend that scenarios should be structured with different
fields such as what the user sees at the beginning of a scenario, a description
of the normal flow of events, a description of what might go wrong, and so
on. If you are using scenarios to elicit detailed requirements, the benefit of
structure is that you have a consistent presentation, which means you are less
likely to forget to include elements that relate to critical system requirements.
Engineers usually like this structured approach. However, my experience is
that system users, who read and check the scenarios, find structured scenarios
to be intimidating and hard to understand.

Consequently, when you are using scenarios at the early stages of product
design, I recommend narrative rather than structured scenarios. These sce-
narios may range from two or three paragraphs of text, like Jack’s scenario in
Table 3.5, to longer descriptions. You may need to write longer descriptions
when your software will be used in existing processes and must interoperate
with other software. Your scenarios may then have to include descriptions of
interactions with other processes and software systems.

Emma’s scenario (shown in Table 3.6) is an example of a longer scenario.
In it, she uses the iLearn system to help her with the administration involved
in setting up a class trip.

Emma’s scenario is different from Jack’s scenario because it describes
a common and well-understood process rather than something new. The
scenario discusses how parts of the process (setting up an email group and
web page) are automated by the iLearn system. Remember that Emma is an
e-learning skeptic; she is not interested in innovative applications. She wants
a system that will make her life easier and reduce the amount of routine
administration that she has to do.

In this type of scenario, you are much more likely to include specific details
of what might be in the system. For example, it explains that Emma logs in
to the system with her Google credentials. This means she doesn’t have to
remember a separate login name and password. I discuss this approach to
authentication in Chapter 7.

When you see this kind of information in a scenario, you need to check
whether this is what the user really needs or whether it represents a more gen-
eral requirement. The statement that the software has to support login using
Google credentials might actually reflect a more general need—to provide a
login mechanism in which users don’t have to remember yet another set of
credentials. You may decide on an alternative approach to authentication,
such as fingerprint or face recognition on a mobile phone, that avoids the need
for system-specific login credentials.

M03_SOME6349_01_GE_C03.indd 72 27/09/2020 14:01

 3.2 ■ Scenarios 73

3.2.1 Writing scenarios

Your starting point for scenario writing should be the personas you have cre-
ated. You should normally try to imagine several scenarios for each persona.
Remember that these scenarios are intended to stimulate thinking rather than
provide a complete description of the system. You don’t need to cover every-
thing you think users might do with your product.

Scenarios should always be written from the user’s perspective and should
be based on identified personas or real users. Some writers suggest that sce-
narios should focus on goals—what the user wants to do—rather than the
mechanisms they use to do this. They argue that scenarios should not include

Emma is teaching the history of World War I to a class of 14-year-olds (S3). A group
of S3 students are visiting the historic World War I battlefields in northern France. She
wants to set up a “battlefields group” where the students who are attending the trip
can share their research about the places they are visiting as well as their pictures and
thoughts about the visit.

From home, she logs onto the iLearn system using her Google account credentials. Emma
has two iLearn accounts—her teacher account and a parent account associated with the
local primary school. The system recognizes that she is a multiple account owner and
asks her to select the account to be used. She chooses the teacher account and the
system generates her personal welcome screen. As well as her selected applications, this
also shows management apps that help teachers create and manage student groups.

Emma selects the “group management” app, which recognizes her role and school from
her identity information and creates a new group. The system prompts for the class year
(S3) and subject (history) and automatically populates the new group with all S3 students
who are studying history. She selects those students going on the trip and adds her
teacher colleagues, Jamie and Claire, to the group.

She names the group and confirms that it should be created. The app sets up an icon on
her iLearn screen to represent the group, creates an email alias for the group, and asks
Emma if she wishes to share the group. She shares access with everyone in the group,
which means that they also see the icon on their screen. To avoid getting too many
emails from students, she restricts sharing of the email alias to Jamie and Claire.

The group management app then asks Emma if she wishes to set up a group web page,
wiki, and blog. Emma confirms that a web page should be created and she types some
text to be included on that page.

She then accesses Flickr using the icon on her screen, logs in, and creates a private group
to share trip photos that students and teachers have taken. She uploads some of her own
photos from previous trips and emails an invitation to join the photo-sharing group to the
battlefields email list. Emma uploads material from her own laptop that she has written about
the trip to iLearn and shares this with the battlefields group. This action adds her documents
to the web page and generates an alert to group members that new material is available.

Table 3.6 Using the iLearn system for administration

M03_SOME6349_01_GE_C03.indd 73 27/09/2020 14:01

74 Chapter 3 ■ Features, Scenarios, and Stories

specific details of an interaction as these limit the freedom of feature design-
ers. I disagree. As you can see from Emma’s scenario, it sometimes makes
sense to talk about mechanisms, such as login with Google, that both product
users and developers understand.

Furthermore, writing scenarios in a general way that doesn’t make assump-
tions about implementation can be potentially confusing for both users and
developers. For example, I think that “X cuts paragraphs from the newspaper
archive and pastes them into the project wiki” is easier to read and understand
than “X uses an information transfer mechanism to move paragraphs from the
newspaper archive to the project wiki.”

Sometimes there may be a specific requirement to include a particular
feature in the system because that feature is widely used. For example, Jack’s
scenario in Table 3.5 discusses the use of an iLearn wiki. Many teachers cur-
rently use wikis to support group writing and they specifically want to have
wikis in the new system. Such user requirements might be even more specific.
For example, when designing the iLearn system, we discovered that teachers
wanted Wordpress blogs, not just a general blogging facility. So, you should
include specific details in a scenario when they reflect reality.

Scenario writing is not a systematic process and different teams approach
it in different ways. I recommend that each team member be given individual
responsibility for creating a small number of scenarios and work individually
to do this. Obviously, members may discuss the scenarios with users and
other experts, but this is not essential. The team then discusses the proposed
scenarios. Each scenario is refined based on that discussion.

Because it is easy for anyone to read and understand scenarios, it is possible
to get users involved in their development. For the iLearn system, we found that
the best approach was to develop an imaginary scenario based on our under-
standing of how the system might be used and then ask users to tell us what we
got wrong. Users could ask about things they did not understand, such as “Why
can’t a photo-sharing site like Flickr be used in Jack’s scenario?” They could
suggest how the scenario could be extended and made more realistic.

We tried an experiment in which we asked a group of users to write their own
scenarios about how they might use the system. This was not a success. The
scenarios they created were simply based on how they worked at the moment.
They were far too detailed and the writers couldn’t easily generalize their expe-
rience. Their scenarios were not useful because we wanted something to help us
generate ideas rather than replicate the systems that they already used.

Scenarios are not software specifications but are ways of helping people
think about what a software system should do. There is no simple answer

M03_SOME6349_01_GE_C03.indd 74 27/09/2020 14:01

 3.2 ■ Scenarios 75

to the question “How many scenarios do I need?” In the iLearn system, 22
scenarios were developed to cover different aspects of system use. There was
quite a lot of overlap among these scenarios, so it was probably more than we
really needed. Generally, I recommend developing three or four scenarios per
persona to get a useful set of information.

Although scenarios certainly don’t have to describe every possible use of
a system, it is important that you look at the roles of each of the personas that
you have developed and write scenarios that cover the main responsibilities
for that role. Jack’s scenario and Emma’s scenario are based on using the
iLearn system to support teaching.

Like other system products designed for use in an organization, however,
iLearn needs to be configured for use. While some of this configuration can
be done by tech-savvy teachers, in many schools it is technical support staff
who have this responsibility. Elena’s scenario, shown in Table 3.7, describes
how she might configure the iLearn software.

Writing scenarios always gives you ideas for the features that you can
include in the system. You may then develop these ideas in more detail by
analyzing the text of the scenario, as I explain in the next section.

Elena has been asked by David, the head of the art department in her school, to help set
up an iLearn environment for his department. David wants an environment that includes
tools for making and sharing art, access to external websites to study artworks, and
“exhibition” facilities so that the students’ work can be displayed.

Elena starts by talking to art teachers to discover the tools that they recommend and
the art sites that they use for studies. She also discovers that the tools they use and the
sites they access vary according to the age of their students. Consequently, different
student groups should be presented with a toolset that is appropriate for their age and
experience.

Once she has established what is required, Elena logs into the iLearn system as an
administrator and starts configuring the art environment using the iLearn setup service.
She creates sub-environments for three age groups plus a shared environment that
includes tools and sites that may be used by all students.

She drags and drops tools that are available locally and the URLs of external websites
into each of these environments. For each of the sub-environments, she assigns an art
teacher as its administrator so that they can’t refine the tool and website selection that
has been set up. She publishes the environments in “review mode” and makes them
available to the teachers in the art department.

After discussing the environments with the teachers, Elena shows them how to refine and
extend the environments. Once they have agreed that the art environment is useful, it is
released to all students in the school.

Table 3.7 Elena’s scenario: Configuring the iLearn system

M03_SOME6349_01_GE_C03.indd 75 27/09/2020 14:01

76 Chapter 3 ■ Features, Scenarios, and Stories

3.3 User stories

I explained in Section 3.2 that scenarios are descriptions of situations in which
a user is trying to do something with a software system. Scenarios are high-
level stories of system use. They should describe a sequence of interactions
with the system but should not include details of these interactions.

User stories are finer-grain narratives that set out in a more detailed and
structured way a single thing that a user wants from a software system. I pre-
sented a user story at the beginning of the chapter:

As an author I need a way to organize the book that I’m writing into
chapters and sections.

This story reflects what has become the standard format of a user story:

As a <role>, I <want / need> to <do something>

Another example of a user story taken from Emma’s scenario might be:

As a teacher, I want to tell all members of my group when new informa-
tion is available.

A variant of this standard format adds a justification for the action:

As a <role> I <want / need> to <do something> so that <reason>

For example:

As a teacher, I need to be able to report who is attending a class trip so
that the school maintains the required health and safety records.

Some people argue that a rationale or justification should always be part
of a user story. I think this is unnecessary if the story makes sense on its own.
Knowing one reason why this might be useful doesn’t help the product devel-
opers. However, in situations where some developers are unfamiliar with what
users do, a rationale can help those developers understand why the story has
been included. A rationale may also help trigger ideas about alternative ways
of providing what the user wants.

An important use of user stories is in planning, and many users of the
Scrum method represent the product backlog as a set of user stories. For
this purpose, user stories should focus on a clearly defined system feature or

M03_SOME6349_01_GE_C03.indd 76 27/09/2020 14:01

 3.3 ■ User stories 77

aspect of a feature that can be implemented within a single sprint. If the story
is about a more complex feature that might take several sprints to implement,
then it is called an “epic.” An example of an epic might be:

As a system manager, I need a way to back up the system and restore
individual applications, files, directories, or the whole system.

A lot of functionality is associated with this user story. For implementation,
it should be broken down into simpler stories, with each story focusing on a
single aspect of the backup system.

When you are thinking about product features, user stories are not intended
for planning but for helping with feature identification. Therefore, you don’t
need to be overly concerned about whether your stories are simple stories or
epics. You should aim to develop stories that are helpful in one of two ways:

■■ as a way of extending and adding detail to a scenario;

■■ as part of the description of the system feature that you have identified.

As an example of scenario refinement, the initial actions in Emma’s sce-
nario shown in Figure 3.6 can be represented by three user stories. Recall that
the scenario says:

From home, she logs onto the iLearn system using her Google account
credentials. Emma has two iLearn accounts—her teacher account and

Figure 3.6 User stories from Emma’s scenario

User stories

As a teacher, I want to be able to
log in to my iLearn account from home
using my Google credentials so that I don’t have
to remember another login id and password.

As a teacher, I want to access
the apps that I use for class
management and administration.

As a teacher and parent, I want
to be able to select the appropriate
iLearn account so that I don’t have to
have separate credentials for each
account.

M03_SOME6349_01_GE_C03.indd 77 27/09/2020 14:01

78 Chapter 3 ■ Features, Scenarios, and Stories

a parent account associated with the local primary school. The system
recognizes that she is a multiple account owner and asks her to select
the account to be used. She chooses the teacher account and the system
generates her personal welcome screen. As well as her selected appli-
cations, this also shows management apps that help teachers create and
manage student groups.

You can create user stories from this account, as I show in Figure 3.6.
You can see from the stories in Figure 3.6 that I have included a rationale

in the story that explains why Emma wants to work in the way specified in the
scenario. It is best not to include rationale in a scenario, as it tends to disrupt
the flow of the description and make it more difficult to read and understand.

When you define user stories from a scenario, you provide more informa-
tion to developers to help them design the product’s features. We can see an
example of this in the stories shown in Figure 3.6. Emma wants an easy way
to authenticate herself to the system, either as a teacher or as a parent. She
doesn’t want to have to remember more login credentials, and she doesn’t
want to have two accounts with different credentials.

As an example of how stories can be used to describe the features of a
system, Emma’s scenario discusses how a group can be created and explains
system actions that take place on group creation. The user stories shown in
Figure 3.7 can be derived from the scenario to describe the Groups feature in
the iLearn system.

Figure 3.7 User stories describing the Groups feature

User stories

As a teacher, I want to be
able to create a group of
students and teachers so
that I can share informa-
tion with that group.

As a teacher, I want the
system to make it easy
for me to select the
students and teachers to
be added to a group.

As a teacher, I want to
be able to send email to
all group members
using a single email
address.

As a teacher, I want to
be able to share
uploaded information
with other group
members.

As a teacher, I want the
iLearn system to automati-
cally set up sharing
mechanisms such as wikis,
blogs, and websites.

M03_SOME6349_01_GE_C03.indd 78 27/09/2020 14:01

 3.3 ■ User stories 79

The set of stories shown in Figure 3.7 is not a complete description of the
Groups feature. No stories are concerned with deleting or changing a group,
restricting access, and other tasks. You start by deriving stories from a sce-
nario, but you then have to think about what other stories might be needed for
a complete description of a feature’s functionality.

A question that is sometimes asked about user stories is whether you should
write “negative stories” that describe what a user doesn’t want. For example,
you might write this negative story:

As a user, I don’t want the system to log and transmit my information
to any external servers.

If you are writing stories to be part of a product backlog, you should avoid
negative stories. It is impossible to write system tests that demonstrate a nega-
tive. In the early stages of product design, however, it may be helpful to write
negative stories if they define an absolute constraint on the system. Alterna-
tively, you can sometimes reframe negative stories in a positive way. For
example, instead of the above story, you could write:

As a user, I want to be able to control the information that is logged and
transmitted by the system to external servers so that I can ensure that
my personal information is not shared.

Some of the user stories that you develop will be sufficiently detailed that
you can use them directly in planning. You can include them in a product
backlog. Sometimes, however, to use stories in planning, you have to refine
the stories to relate them more directly to the implementation of the system.

It is possible to express all of the functionality described in a scenario as
user stories. So, an obvious question that you might ask is “Why not just
develop user stories and forget about scenarios?” Some agile methods rely
exclusively on user stories, but I think that scenarios are more natural and are
helpful for the following reasons:

1. Scenarios read more naturally because they describe what a user of a
system is actually doing with that system. People often find it easier to
relate to this specific information rather than to the statement of wants or
needs set out in a set of user stories.

2. When you are interviewing real users or checking a scenario with real
users, they don’t talk in the stylized way that is used in user stories.
People relate better to the more natural narrative in scenarios.

M03_SOME6349_01_GE_C03.indd 79 27/09/2020 14:01

80 Chapter 3 ■ Features, Scenarios, and Stories

3. Scenarios often provide more context—information about what users are
trying to do and their normal ways of working. You can do this in user
stories, but it means that they are no longer simple statements about the
use of a system feature.

Scenarios and stories are helpful in both choosing and designing system
features. However, you should think of scenarios and user stories as “tools
for thinking” about a system rather than a system specification. Scenarios
and stories that are used to stimulate thinking don’t have to be complete or
consistent, and there are no rules about how many of each you need.

3.4 Feature identification

As I said in the chapter introduction, your aim at this early stage of product
design is to create a list of features that define your software product. A feature
is a way of allowing users to access and use your product’s functionality so that
the feature list defines the overall functionality of the system. In this section, I
explain how scenarios and stories can be used to help identify product features.

You should, ideally, identify product features that are independent, coher-
ent and relevant:

1. Independence A feature should not depend on how other system features
are implemented and should not be affected by the order of activation of
other features.

2. Coherence Features should be linked to a single item of functionality.
They should not do more than one thing, and they should never have side
effects.

3. Relevance System features should reflect the way users normally carry out
some task. They should not offer obscure functionality that is rarely required.

There is no definitive method for feature selection and design. Rather, the
four important knowledge sources shown in Figure 3.8 can help with this.

Table 3.8 explains these knowledge sources in more detail. Of course,
these are not all of equal importance for all products. For example, domain
knowledge is very important for business products but less important for
generic consumer products. You therefore need to think carefully about the
knowledge required for your specific product.

M03_SOME6349_01_GE_C03.indd 80 27/09/2020 14:01

 3.4 ■ Feature identification 81

Innovation often stems from a combination of domain and technology
knowledge. A good example is the Git system for code management that I
cover in Chapter 10. Git works in a completely different way from previous
code management systems. These older systems were based on a technology
model in which storage was expensive, so they focused on limiting storage use
and delivering information to users as required. The developer of Git realized

Figure 3.8 Feature design

User
knowledge

Technology
knowledge

Product
knowledge

Domain
knowledge

Feature
design

Knowledge Description

User knowledge You can use user scenarios and user stories to inform
the team of what users want and how they might use the
software features.

Product knowledge You may have experience of existing products or decide to
research what these products do as part of your development
process. Sometimes your features have to replicate existing
features in these products because they provide fundamental
functionality that is always required.

Domain knowledge This is knowledge of the domain or work area (e.g., finance,
event booking) that your product aims to support. By
understanding the domain, you can think of new innovative
ways of helping users do what they want to do.

Technology knowledge New products often emerge to take advantage of
technological developments since their competitors were
launched. If you understand the latest technology, you can
design features to make use of it.

Table 3.8 Knowledge required for feature design

M03_SOME6349_01_GE_C03.indd 81 27/09/2020 14:01

82 Chapter 3 ■ Features, Scenarios, and Stories

that storage had become much cheaper, so it was possible for all users to have
a complete copy of all information. This allowed for a new approach that
dramatically simplified software development by distributed teams.

When you are designing a product feature set and deciding how features
should work, you have to consider the six factors shown in Figure 3.9.

Unfortunately, it is impossible to design a feature set in which all of these
factors are optimized, so you have to make some trade-offs:

1. Simplicity and functionality Everyone says they want software to be as
simple as possible to use. At the same time, they demand functionality
that helps them do what they want to do. You need to find a balance
between providing a simple, easy-to-use system and including enough
functionality to attract users with a variety of needs.

2. Familiarity and novelty Users prefer that new software should support the
familiar everyday tasks that are part of their work or life. However, if you
simply replicate the features of a product that they already use, there is
no real motivation for them to change. To encourage users to adopt your
system, you need to include new features that will convince users that
your product can do more than its competitors.

3. Automation and control You may decide that your product can automati-
cally do things for users that other products can’t. However, users inevi-
tably do things differently from one another. Some may like automation,
where the software does things for them. Others prefer to have control.
You therefore have to think carefully about what can be automated, how
it is automated, and how users can configure the automation so that the
system can be tailored to their preferences.

Figure 3.9 Factors in feature set design

Simplicity Functionality

Familiarity

NoveltyAutomation

Control
Feature set

design factors

M03_SOME6349_01_GE_C03.indd 82 27/09/2020 14:01

 3.4 ■ Feature identification 83

Your choices have a major influence on the features to be included in your
product, how they integrate, and the functionality they provide. You may
make a specific choice—for example, to focus on simplicity—that will drive
the design of your product.

One problem that product developers should be aware of and try to avoid is
“feature creep.” Feature creep means that the number of features in a product
creeps up as new potential uses of the product are envisaged.

The size and complexity of many large software products such as Microsoft
Office and Adobe Photoshop are a consequence of feature creep. Most users
use only a relatively small subset of the features of these products. Rather
than stepping back and simplifying things, developers continually added new
features to the software.

Feature creep adds to the complexity of a product, which means that you
are likely to introduce bugs and security vulnerabilities into the software. It
also usually makes the user interface more complex. A large feature set often
means that you have to bundle vaguely related features together and provide
access to these through a higher-level menu. This can be confusing, especially
for less experienced users.

Feature creep happens for three reasons:

1. Product managers and marketing executives discuss the functionality they
need with a range of different product users. Different users have slightly
different needs or may do the same thing but in slightly different ways.
There is a natural reluctance to say no to important users, so functionality
to meet all of the users’ demands ends up in the product.

2. Competitive products are introduced with slightly different functional-
ity to your product. There is marketing pressure to include comparable
functionality so that market share is not lost to these competitors. This
can lead to “feature wars,” where competing products become more and
more bloated as they replicate the features of their competitors.

3. The product tries to support both experienced and inexperienced users.
Easy ways of implementing common actions are added for inexperienced
users and the more complex features to accomplish the same thing are
retained because experienced users prefer to work that way.

To avoid feature creep, the product manager and the development team
should review all feature proposals and compare new proposals to features
that have already been accepted for implementation. The questions shown in
Figure 3.10 may be used to help identify unnecessary features.

M03_SOME6349_01_GE_C03.indd 83 27/09/2020 14:01

84 Chapter 3 ■ Features, Scenarios, and Stories

3.4.1 Feature derivation

When you start with a product vision or writing scenarios based on that vision,
product features immediately come to mind. I discussed the iLearn system
vision in Chapter 1 and I repeat it in Table 3.9.

I have highlighted phrases in this vision suggesting features that should be
part of the product, including:

■■ a feature that allows users to access and use existing web-based resources;

■■ a feature that allows the system to exist in multiple different configurations;

■■ a feature that allows user configuration of the system to create a specific
environment.

These features distinguish the iLearn system from existing VLEs and are the
central features of the product.

FOR teachers and educators WHO need a way to help students use web-based learning
resources and applications, THE iLearn system is an open learning environment THAT
allows the set of resources used by classes and students to be easily configured for these
students and classes by teachers themselves.

UNLIKE Virtual Learning Environments, such as Moodle, the focus of iLearn is the learning
process rather than the administration and management of materials, assessments,
and coursework. OUR product enables teachers to create subject and age-specific
environments for their students using any web-based resources, such as videos,
simulations, and written materials that are appropriate

Table 3.9 The iLearn system vision

Figure 3.10 Avoiding feature creep

Feature
questions

Can this feature be implemented
by extending an existing feature
rather than adding another
feature to the system?

Does this feature provide
general functionality or is
it a very specific feature?

Does this feature really add
anything new or is it simply
an alternative way of doing
something that is already
supported?

Is this feature likely to be
important to and used by
most software users?

M03_SOME6349_01_GE_C03.indd 84 27/09/2020 14:01

 3.4 ■ Feature identification 85

This approach of highlighting phrases in a narrative description can be used
when analyzing scenarios to find system features. You read through the sce-
narios, look for user actions (usually denoted by active verbs, such as “use,”
“choose,” “send,” “update,” and so on), and highlight the phrases where these
are mentioned. You then think about the product features that can support
these actions and how they might be implemented.

In Table 3.10, I have done this with Jack’s scenario (see Table 3.5), in
which he sets up a system for his students’ project work.

The highlighted text identifies features and feature characteristics that
should be part of the iLearn system:

■■ a wiki for group writing;

■■ access to the SCRAN history archive, which is a shared national resource
that provides access to historical newspaper and magazine articles for
schools and universities;

■■ the ability to set up and access an email group;

■■ the ability to integrate some applications with the iLearn authentication
service.

It also confirms the need for the configuration feature that has already been
identified from the product vision.

Jack is a primary school teacher in Ullapool, teaching P6 pupils. He has decided that a
class project should be focused around the fishing industry in the area, looking at the
history, development, and economic impact of fishing.

As part of this, students are asked to gather and share reminiscences from relatives,
use newspaper archives, and collect old photographs related to fishing and fishing
communities in the area. Students use an iLearn wiki to gather together fishing stories
and SCRAN (a history archive) to access newspaper archives and photographs. However,
Jack also needs a photo-sharing site as he wants pupils to take and comment on each
others’ photos and to upload scans of old photographs that they may have in their
families. He needs to be able to moderate posts with photos before they are shared,
because pre-teen children can’t understand copyright and privacy issues.

Jack sends an email to a primary school teachers’ group to see if anyone can recommend
an appropriate system. Two teachers reply and both suggest that he use KidsTakePics, a
photo-sharing site that allows teachers to check and moderate content. As KidsTakePics
is not integrated with the iLearn authentication service, he sets up a teacher and a class
account with KidsTakePics.

He uses the the iLearn setup service to add KidsTakePics to the services seen by the
students in his class so that when they log in, they can immediately use the system to
upload photos from their phones and class computers.

Table 3.10 Jack’s scenario with highlighted phrases

M03_SOME6349_01_GE_C03.indd 85 27/09/2020 14:01

86 Chapter 3 ■ Features, Scenarios, and Stories

Feature identification should be a team activity, and as features are identi-
fied, the team should discuss them and generate ideas about related features.
Jack’s scenario suggests that there is a need for groups to write together. You
should therefore think about age-appropriate ways to design features for:

■■ collaborative writing, where several people can work simultaneously on
the same document;

■■ blogs and web pages as a way of sharing information.

You can also think about generalizing the features suggested by the sce-
nario. The scenario identifies the need for access to an external archive
(SCRAN). However, perhaps the feature that you add to the software should
support access to any external archive and allow students to transfer informa-
tion to the iLearn system.

You can go through a similar process of highlighting phrases in all of the
scenarios that you have developed and using them to identify and then general-
ize a set of product features. If you have developed user stories to refine your
scenarios, these may immediately suggest a product feature or feature character-
istic. For example, this story was derived from Emma’s scenario (see Table 3.6):

As a teacher and a parent, I want to be able to select the appropriate
iLearn account so that I don’t have to have separate credentials for
each account.

This story states that the account feature of the iLearn system has to accom-
modate the idea that a single user may have multiple accounts. Each account
is associated with a particular role the user may adopt when using the system.
When logging in, users should be able to select the account they wish to use.

3.4.2 The feature list

The output of the feature identification process should be a list of features
that you use for designing and implementing your product. There is no need
to go into a lot of detail about the features at this stage. You add detail when
you are implementing the feature.

You may describe the features on the list using the input/action/output
model that I showed in Figure 3.2. Alternatively, you can use a standard tem-
plate, which includes a narrative description of the feature, constraints that
have to be considered, and other relevant comments.

M03_SOME6349_01_GE_C03.indd 86 27/09/2020 14:01

 3.4 ■ Feature identification 87

Figure 3.11 is an example of this feature template that is used to describe
the system authentication feature in the iLearn system.

The descriptions associated with the feature can sometimes be very simple.
For example, a Print feature might be described using the simple feature tem-
plate that I introduced at the beginning of the chapter:

Print the document to a selected printer or to PDF.

Alternatively, you can describe a feature from one or more user stories.
Descriptions based on user stories are particularly useful if you intend to use
Scrum and story-based planning when developing the software.

Table 3.11 shows how you can describe the configuration feature of the
iLearn system using user stories and the feature template shown in Figure 3.11.
In this example, I have used an alternative text-based form of the feature
template. This is useful when you have relatively long feature descriptions.
Notice that the table includes user stories from the system manager and a
teacher.

The product development team should meet to discuss the scenarios and
stories, and it makes sense to set out the initial list of features on a whiteboard.
This can be done using a web-based discussion, but these are less effective
than a face-to-face meeting. The feature list should then be recorded in a

Figure 3.11 The iLearn authentication feature

iLearn
authentication

Comments
Future authentication mechanisms
may be based on biometrics and
this should be considered in the
design of the system.

Description
Authentication is used to identify users to the system
and is currently based on a login id/password system.
Users may authenticate themselves using their national
user id and a personal password or may use their
Google or Facebook credentials.

Constraints
All users must have a national user id
and system password that they use for
initial system authentication. They
may then link their account with their
Google or Facebook account for future
authentication sessions.

M03_SOME6349_01_GE_C03.indd 87 27/09/2020 14:01

88 Chapter 3 ■ Features, Scenarios, and Stories

shared document such as a wiki, a Google Sheet, or an issue-tracking system
such as JIRA. Feature descriptions may then be updated and shared as new
information about the features emerges.

When you have developed an initial list of feature ideas, you should either
extend your existing prototype or create a prototype system to demonstrate
these features. As I said in Chapter 1, the aim of software prototyping is to
test and clarify product ideas and to demonstrate your product to management,
funders, and potential customers. You should focus on the novel and critical
features of your system. You don’t need to implement or demonstrate routine
features such as Cut and Paste or Print.

When you have a prototype and have experimented with it, you will inevi-
tably discover problems, omissions, and inconsistencies in your initial list
of features. You then update and change this list before moving on to the
development of your software product.

I think that scenarios and user stories should always be your starting point for
identifying product features. However, the problem with basing product designs
on user modeling and research is that it locks in existing ways of working. Sce-
narios tell you how users work at the moment; they don’t show how they might
change their ways of working if they had the right software to support them.

User research, on its own, rarely helps you innovate and invent new ways of
working. Famously, Nokia, then the world leader in mobile (cell) phones, did

Table 3.11 Feature description using user stories

iLearn system configuration

Description
As a system manager, I want to create and configure an iLearn environment by adding
and removing services to/from that environment so that I can create environments for
specific purposes.
As a system manager, I want to set up sub-environments that include a subset of
services that are included in another environment.
As a system manager, I want to assign administrators to created environments.
As a system manager, I want to limit the rights of environment administrators so that
they cannot accidentally or deliberately disrupt the operation of key services.
As a teacher, I want to be able to add services that are not integrated with the iLearn
authentication system.

Constraints
The use of some tools may be limited for license reasons so there may be a need to
access license management tools during configuration.

Comments
Based on Elena’s and Jack’s scenarios

M03_SOME6349_01_GE_C03.indd 88 27/09/2020 14:01

 Key points 89

K E Y P O I N T S

■■ A software product feature is a fragment of functionality that implements something a user
may need or want when using the product.

■■ The first stage of product development is to identify the list of product features in which you
name each feature and give a brief description of its functionality.

■■ Personas are “imagined users”— character portraits of types of users you think might use
your product.

■■ A persona description should paint a picture of a typical product user. It should describe the
user’s educational background, technology experience, and why they might want to use your
product.

■■ A scenario is a narrative that describes a situation where a user is accessing product features
to do something that they want to do.

■■ Scenarios should always be written from the user’s perspective and should be based on
identified personas or real users.

■■ User stories are finer-grain narratives that set out, in a structured way, something that a user
wants from a software system.

■■ User stories may be used to extend and add detail to a scenario or as part of the description
of system features.

■■ The key influences in feature identification and design are user research, domain knowledge,
product knowledge, and technology knowledge.

■■ You can identify features from scenarios and stories by highlighting user actions in these
narratives and thinking about the features that you need to support these actions.

extensive user research and produced better and better conventional phones.
Then Apple invented the smartphone without user research, and Nokia is now
a minor player in the phone business.

As I said, stories and scenarios are tools for thinking; the most important
benefit of using them is that you gain an understanding of how your software
might be used. It makes sense to start by identifying a feature set from stories
and scenarios. However, you should also think creatively about alternative
or additional features that help users to work more efficiently or to do things
differently.

M03_SOME6349_01_GE_C03.indd 89 27/09/2020 14:01

90 Chapter 3 ■ Features, Scenarios, and Stories

R E C O M M E N D E D R E A D I N G

“An Introduction to Feature-Driven Development” This article is an introduction to this agile
method that focuses on features, a key element of software products. (S. Palmer, 2009)

https://dzone.com/articles/introduction-feature-driven

“A Closer Look at Personas: What they are and how they work” This excellent article on personas
explains how they can be used in different situations. Lots of links to relevant associated articles.
(S. Golz, 2014)

https://www.smashingmagazine.com/2014/08/a-closer-look-at-personas-part-1/

“How User Scenarios Help to Improve Your UX” Scenarios are often used in designing the user
experience for a system. However, the advice here is just as relevant for scenarios intended to
help discover system features. (S. Idler, 2011)

https://usabilla.com/blog/how-user-scenarios-help-to-improve-your-ux/

“10 Tips for Writing Good User Stories” Sound advice on story writing is presented by an author
who takes a pragmatic view of the value of user stories. (R. Pichler, 2016)

http://www.romanpichler.com/blog/10-tips-writing-good-user-stories/

“What Is a Feature? A qualitative study of features in industrial software product lines” This
academic paper discusses a study of features in four different systems and tries to establish
what a “good” feature is. It concludes that good features should describe customer-related
functionality precisely. (T. Berger et al., 2015)

https://people.csail.mit.edu/mjulia/publications/What_Is_A_Feature_2015.pdf

P R E S E N T A T I O N S , V I D E O S , A N D L I N K S

https://iansommerville.com/engineering-software-products/features-scenarios-and-stories

E X E R C I S E S

 3.1. Using the input/action/output template that I introduced at the beginning of this
chapter, describe two features of software that you commonly use, such as an editor or a
presentation system.

 3.2. Explain why it is helpful to develop a number of personas representing types of system user
before you move on to write scenarios of how the system will be used.

M03_SOME6349_01_GE_C03.indd 90 27/09/2020 14:01

https://dzone.com/articles/introduction-feature-driven
https://www.smashingmagazine.com/2014/08/a-closer-look-at-personas-part-1/
https://usabilla.com/blog/how-user-scenarios-help-to-improve-your-ux/
http://www.romanpichler.com/blog/10-tips-writing-good-user-stories/
https://people.csail.mit.edu/mjulia/publications/What_Is_A_Feature_2015.pdf
https://iansommerville.com/engineering-software-products/features-scenarios-and-stories

 Exercises 91

 3.3. Based on your own experience of school and teachers, write a persona for a high school
science teacher who is interested in building simple electronic systems and using them in
class teaching.

 3.4. Extend Jack’s scenario, shown in Table 3.5, to include a section in which students record
audio reminiscences from their older friends and relatives and include them in the iLearn
system.

 3.5. What do you think are the weaknesses of scenarios as a way of envisaging how users might
interact with a software system?

 3.6. Starting with Jack’s scenario (Table 3.5), derive four user stories about the use of the iLearn
system by both students and teachers.

 3.7. What do you think are the weaknesses of user stories when used to identify system
features and how they work?

 3.8. Explain why domain knowledge is important when identifying and designing product
features.

 3.9. Suggest how a development team might avoid feature creep when “it is” to be in
agreement with “a team” faced with many different suggestions for new features to be
added to a product.

 3.10. Based on Elena’s scenario, shown in Table 3.7, use the method of highlighting phrases in
the scenario to identify four features that might be included in the iLearn system.

M03_SOME6349_01_GE_C03.indd 91 27/09/2020 14:01

Software Architecture

The focus of this book is software products—individual applications that run
on servers, personal computers, or mobile devices. To create a reliable, secure,
and efficient product, you need to pay attention to its overall organization,
how the software is decomposed into components, the server organization,
and the technologies used to build the software. In short, you need to design
the software architecture.

The architecture of a software product affects its performance, usability,
security, reliability, and maintainability. Architectural issues are so important
that three chapters in this book are devoted to them. In this chapter I discuss
the decomposition of software into components, client–server architecture,
and technology issues that affect the software architecture. In Chapter 5
I cover architectural issues and choices you have to make when implementing
your software on the cloud. In Chapter 6 I cover microservices architecture,
which is particularly important for cloud-based products.

If you google “software architecture definition,” you find many different
interpretations of the term. Some focus on “architecture” as a noun, the struc-
ture of a system; others consider “architecture” as a verb, the process of defin-
ing these structures. Rather than try to invent yet another definition, I use a
definition of software architecture that is included in an IEEE standard,1
shown in Table 4.1.

An important term in this definition is “components.” Here it is used in
a very general way, so a component can be anything from a program (large

1IEEE standard 1471. This has now been superseded by a later standard that has revised the
definition. In my opinion, the revised definition is not an improvement and it is harder to
explain and understand. https://en.wikipedia.org/wiki/IEEE_1471

4

M04_SOME6349_01_GE_C04.indd 92 27/09/2020 14:02

https://en.wikipedia.org/wiki/IEEE_1471

 Chapter 4 ■ Software Architecture 93

scale) to an object (small scale). A component is an element that implements
a coherent set of functionality or features. When designing software architec-
ture, you don’t have to decide how an architectural element or component is
to be implemented. Rather, you design the component interface and leave the
implementation of that interface to a later stage of the development process.

The best way to think of a software component is as a collection of one or
more services that may be used by other components (Figure 4.1). A service
is a coherent fragment of functionality. It can range from a large-scale service,
such as a database service, to a microservice, which does one very specific
thing. For example, a microservice might simply check the validity of a URL.
Services can be implemented directly, as I discuss in Chapter 6, which covers
microservice architecture. Alternatively, services can be part of modules or
objects and accessed through a defined component interface or an application
programming interface (API).

The initial enthusiasts for agile development invented slogans such as “You
Ain’t Gonna Need It” (YAGNI) and “Big Design Up Front” (BDUF), where
YAGNI is good and BDUF is bad. They suggested that developers should
not plan for change in their systems because change can’t be predicted and
might never happen. Many people think this means that agile developers
believed there was no need to design the architecture of a software system

Software architecture

Architecture is the fundamental organization of a software system embodied in its
components, their relationships to each other and to the environment, and the principles
guiding its design and evolution.

Table 4.1 The IEEE definition of software architecture

Figure 4.1 Access to services provided by software components

S2 S3S1 S5 S6S4

Component 1

Services accessed through
the component API

Component 2

Services accessed directly
by other components API

M04_SOME6349_01_GE_C04.indd 93 27/09/2020 14:02

94 Chapter 4 ■ Software Architecture

before implementation. Rather, when issues emerged during development,
they should simply be tackled by refactoring—changing and reorganizing
the software.

The inventors of agile methods are good engineers, and I don’t think they
intended that software architecture should not be designed. A principle of
agile methods is that system planning and documentation should be mini-
mized. However, this does not mean that you can’t plan and describe the
overall structure of your system. Agile methods now recognize the importance
of architectural design and suggest that this should be an early activity in the
development process. You can do this in a Scrum sprint where the outcome
of the sprint is an informal architectural design.

Some people think it is best to have a single software architect. This per-
son should be an experienced engineer who uses background knowledge and
expertise to create a coherent architecture. However, the problems with this
“single architect” model is that the team may not understand the architectural
decisions that were made. To make sure that your whole team understands the
architecture, I think everyone should be involved, in some way, in the archi-
tectural design process. This helps less experienced team members learn and
understand why decisions are made. Furthermore, new team members may
have knowledge and insights into new or unfamiliar technologies that can be
used in the design and implementation of the software.

A development team should design and discuss the software product archi-
tecture before starting the final product implementation. They should agree on
priorities and understand the trade-offs that they are making in these architec-
tural decisions. They should create a description of the product architecture
that sets out the fundamental structure of the software and serves as a refer-
ence for its implementation.

4.1 Why is architecture important?

I suggested in Chapter 1 that you should always develop a product prototype.
The aim of a prototype is to help you understand more about the product that
you are developing, and so you should aim to develop this as quickly as pos-
sible. Issues such as security, usability, and long-term maintainability are not
important at this stage.

When you are developing a final product, however, “non-functional” attri-
butes are critically important (Table 4.2). It is these attributes, rather than

M04_SOME6349_01_GE_C04.indd 94 27/09/2020 14:02

 4.1 ■ Why is architecture important? 95

product features, that influence user judgements about the quality of your
software. If your product is unreliable, insecure, or difficult to use, then it is
almost bound to be a failure. Product development takes much longer than
prototyping because of the time and effort that are needed to ensure that your
product is reliable, maintainable, secure, and so on.

Architecture is important because the architecture of a system has a
fundamental influence on these non-functional properties. Table 4.3 is a

Attribute Key issue

Responsiveness Does the system return results to users in a reasonable time?

Reliability Do the system features behave as expected by both developers
and users?

Availability Can the system deliver its services when requested by users?

Security Does the system protect itself and users’ data from unauthorized
attacks and intrusions?

Usability Can system users access the features that they need and use
them quickly and without errors?

Maintainability Can the system be readily updated and new features added
without undue costs?

Resilience Can the system continue to deliver user services in the event of
partial failure or external attack?

Table 4.2 Non-functional system quality attributes

A centralized security architecture

In the Star Wars prequel Rogue One (https://en.wikipedia.org/wiki/Rogue_One), the evil
Empire has stored the plans for all of their equipment in a single, highly secure, well-
guarded, remote location. This is called a centralized security architecture. It is based on
the principle that if you maintain all of your information in one place, then you can apply
lots of resources to protect that information and ensure that intruders can’t get it.

Unfortunately (for the Empire), the rebels managed to breach their security. They stole
the plans for the Death Star, an event that underpins the whole Star Wars saga. In
trying to stop them, the Empire destroyed their entire archive of system documentation
with who knows what resultant costs. Had the Empire chosen a distributed security
architecture, with different parts of the Death Star plans stored in different locations, then
stealing the plans would have been more difficult. The rebels would have had to breach
security in all locations to steal the complete Death Star blueprints.

Table 4.3 The influence of architecture on system security

M04_SOME6349_01_GE_C04.indd 95 27/09/2020 14:02

https://en.wikipedia.org/wiki/Rogue_One

96 Chapter 4 ■ Software Architecture

non-computing example of how architectural choices affect system proper-
ties. It is taken from the film Rogue One, part of the Star Wars saga.

Rogue One is science fiction, but it demonstrates that architectural deci-
sions have fundamental consequences. The benefits of a centralized security
architecture are that it is easy to design and build protection and the protected
information can be accessed efficiently. However, if your security is breached,
you lose everything. If you distribute information, it takes longer to access all
of the information and costs more to protect it. If security is breached in one
location, however, you lose only the information that you have stored there.

Figures 4.2 and 4.3 illustrate a situation where the system architecture
affects the maintainability and performance of a system. Figure 4.2 shows
a system with two components (C1 and C2) that share a common database.
This is a common architecture for web-based systems. Let’s assume that C1
runs slowly because it has to reorganize the information in the database before
using it. The only way to make C1 faster might be to change the database.
This means that C2 also has to be changed, which may potentially affect its
response time.

Figure 4.3 shows a different architecture where each component has its
own copy of the parts of the database that it needs. Each of these components
can therefore use a different database structure, and so operate efficiently.
If one component needs to change the database organization, this does not
affect the other component. Also, the system can continue to provide a partial
service in the event of a database failure. This is impossible in a centralized
database architecture.

However, the distributed database architecture may run more slowly and
may cost more to implement and change. There needs to be a mechanism

Figure 4.2 Shared database architecture

User interface

C1 C2

Shared database

M04_SOME6349_01_GE_C04.indd 96 27/09/2020 14:02

 4.1 ■ Why is architecture important? 97

(shown here as component C3) to ensure that the data shared by C1 and C2
are kept consistent when changes are made. This takes time and it is possible
that users will occasionally see inconsistent information. Furthermore, addi-
tional storage costs are associated with the distributed database architecture
and higher costs of change if a new component that requires its own database
has to be added to the system.

It is impossible to optimize all of the non-functional attributes in the same
system. Optimizing one attribute, such as security, inevitably affects other
attributes, such as system usability and efficiency. You have to think about
these issues and the software architecture before you start programming. Oth-
erwise, it is almost inevitable that your product will have undesirable charac-
teristics and will be difficult to change.

Another reason why architecture is important is that the software architecture
you choose affects the complexity of your product. The more complex a system,
the more difficult and expensive it is to understand and change. Programmers
are more likely to make mistakes and introduce bugs and security vulnerabilities
when they are modifying or extending a complex system. Therefore, minimiz-
ing complexity should be an important goal for architectural design.

The organization of a system has a profound effect on its complexity, and
it is very important to pay attention to this when designing the software archi-
tecture. I explain architectural complexity in Section 4.3, and I cover general
issues of program complexity in Chapter 8.

Figure 4.3 Multiple database architecture

User interface

C1

C1 database C2 database

C3

Database reconciliation

C2

M04_SOME6349_01_GE_C04.indd 97 27/09/2020 14:02

98 Chapter 4 ■ Software Architecture

4.2 Architectural design

Architectural design involves understanding the issues that affect the archi-
tecture of your particular product and creating a description of the architec-
ture that shows the critical components and some of their relationships. The
architectural issues that are most important for software product development
are shown in Figure 4.4 and Table 4.4.

Other human and organizational factors also affect architectural design
decisions. These include the planned schedule to bring the product to market,
the capabilities of your development team, and the software development
budget. If you choose an architecture that requires your team to learn unfa-
miliar technologies, then this may delay the delivery of your system. There is
no point in creating a “perfect” architecture that is delivered late if this means
that a competing product captures the market.

Architectural design involves considering these issues and deciding on
essential compromises that allow you to create a system that is “good enough”
and can be delivered on time and on budget. Because it is impossible to opti-
mize everything, you have to make a series of trade-offs when choosing an
architecture for your system. Some examples are:

■■ maintainability vs. performance;

■■ security vs. usability;

■■ availability vs. time to market and cost.

Figure 4.4 Issues that influence architectural decisions

Non-functional
product characteristics

Product
lifetime

Software
reuse

Number of
users

Software
compatibility Architectural

influences

M04_SOME6349_01_GE_C04.indd 98 27/09/2020 14:02

 4.2 ■ Architectural design 99

System maintainability is an attribute that reflects how difficult and expen-
sive it is to make changes to a system after it has been released to customers.
In general, you improve maintainability by building a system from small
self-contained parts, each of which can be replaced or enhanced if changes
are required. Wherever possible, you should avoid shared data structures and
you should make sure that, when data are processed, separate components are
used to “produce” and to “consume” data.

In architectural terms, this means that the system should be decomposed
into fine-grain components, each of which does one thing and one thing only.
More general functionality emerges by creating networks of these components
that communicate and exchange information. Microservice architectures,
explained in Chapter 6, are an example of this type of architecture.

However, it takes time for components to communicate with each other. Con-
sequently, if many components are involved in implementing a product feature,

Issue Architectural importance

Non-functional product
characteristics

Non-functional product characteristics such as security
and performance affect all users. If you get these wrong,
your product is unlikely to be a commercial success.
Unfortunately, some characteristics are opposing, so you
can optimize only the most important.

Product lifetime If you anticipate a long product lifetime, you need to
create regular product revisions. You therefore need an
architecture that can evolve, so that it can be adapted to
accommodate new features and technology.

Software reuse You can save a lot of time and effort if you can reuse
large components from other products or open-source
software. However, this constrains your architectural
choices because you must fit your design around the
software that is being reused.

Number of users If you are developing consumer software delivered over
the Internet, the number of users can change very
quickly. This can lead to serious performance degradation
unless you design your architecture so that your system
can be quickly scaled up and down.

Software compatibility For some products, it is important to maintain
compatibility with other software so that users can adopt
your product and use data prepared using a different
system. This may limit architectural choices, such as the
database software that you can use.

Table 4.4 The importance of architectural design issues

M04_SOME6349_01_GE_C04.indd 99 27/09/2020 14:02

100 Chapter 4 ■ Software Architecture

the software will be slower. Avoiding shared data structures also has an impact
on performance. There may be delays involved in transferring data from one
component to another and in ensuring that duplicated data are kept consistent.

The constant and increasing risk of cybercrime means that all product
developers have to design security into their software. Security is so impor-
tant for product development that I devote a separate chapter (Chapter 7) to
this topic. You can achieve security by designing the system protection as a
series of layers (Figure 4.5). An attacker has to penetrate all of those layers
before the system is compromised. Layers might include system authentica-
tion layers, a separate critical feature authentication layer, an encryption layer,
and so on. Architecturally, you can implement each of these layers as separate
components so that if an attacker compromises one of these components, then
the other layers remain intact.

Unfortunately, there are drawbacks to using multiple authentication layers.
A layered approach to security affects the usability of the software. Users have
to remember information, like passwords, that is needed to penetrate a secu-
rity layer. Their interaction with the system is inevitably slowed by its security
features. Many users find this irritating and often look for work-arounds so
that they do not have to re-authenticate to access system features or data.

Many security breaches arise because users behave in an insecure way,
such as choosing passwords that are easy to guess, sharing passwords, and
leaving systems logged on. They do this because they are frustrated by system
security features that are difficult to use or that slow down their access to the
system and its data. To avoid this, you need an architecture that doesn’t have
too many security layers, that doesn’t enforce unnecessary security, and that
provides, where possible, helper components that reduce the load on users.

Figure 4.5 Authentication layers

Protected asset such as a
database of users’ credit cards

Encryption

Feature authentication

Application authentication

IP authentication

M04_SOME6349_01_GE_C04.indd 100 27/09/2020 14:02

 4.2 ■ Architectural design 101

The availability of a system is a measure of the amount of uptime of that
system. It is normally expressed as a percentage of the time that a system
is available to deliver user services. Therefore, an availability of 99.9% in
a system that is intended to be constantly available means that the system
should be available for 86,313 seconds out of the 86,400 seconds in a day.
Availability is particularly important in enterprise products, such as products
for the finance industry, where 24/7 operation is expected.

Architecturally, you improve availability by having redundant components
in a system. To make use of redundancy, you include sensor components that
detect failure and switching components that switch operation to a redundant
component when a failure is detected. The problem here is that implementing
these extra components takes time and increases the cost of system develop-
ment. It adds complexity to the system and therefore increases the chances of
introducing bugs and vulnerabilities. For this reason, most product software
does not use component-switching in the event of system failure. As I explain
in Chapter 8, you can use reliable programming techniques to reduce the
changes of system failure.

Once you have decided on the most important quality attributes for your
software, you have to consider three questions about the architectural design
of your product:

1. How should the system be organized as a set of architectural components,
where each of these components provides a subset of the overall system
functionality? The organization should deliver the system security, reli-
ability, and performance that you need.

2. How should these architectural components be distributed and commu-
nicate with each other?

3. What technologies should be used in building the system, and what com-
ponents should be reused?

I cover these three questions in the remaining sections of this chapter.
Architectural descriptions in product development provide a basis for the

development team to discuss the organization of the system. An important
secondary role is to document a shared understanding of what needs to be
developed and what assumptions have been made in designing the software.
The final system may differ from the original architectural model, so it is not
a reliable way of documenting delivered software.

I think informal diagrams based around icons to represent entities, lines
to represent relationships, and text are the best way to describe and share

M04_SOME6349_01_GE_C04.indd 101 27/09/2020 14:02

102 Chapter 4 ■ Software Architecture

information about software product architectures. Everyone can participate
in the design process. You can draw and change informal diagrams quickly
without using special software tools. Informal notations are flexible so that
you can make unanticipated changes easily. New people joining a team can
understand them without specialist knowledge.

The main problems with informal models are that they are ambiguous and
they can’t be checked automatically for omissions and inconsistencies. If you
use more formal approaches, based on architectural description languages
(ADLs) or the Unified Modeling Language (UML), you reduce ambiguity
and can use checking tools. However, my experience is that formal notations
get in the way of the creative design process. They constrain expressiveness
and require everyone to understand them before they can participate in the
design process.

4.3 System decomposition

The idea of abstraction is fundamental to all software design. Abstraction in
software design means that you focus on the essential elements of a system or
software component without concern for its details. At the architectural level,
your concern should be on large-scale architectural components. Decomposi-
tion involves analyzing these large-scale components and representing them
as a set of finer-grain components.

For example, Figure 4.6 is a diagram of the architecture of a product that
I was involved with some years ago. This system was designed for use in
libraries and gave users access to documents that were stored in a number of
private databases, such as legal and patent databases. Payment was required
for access to these documents. The system had to manage the rights to these
documents and collect and account for access payments.

In this diagram, each layer in the system includes a number of logically
related components. Informal layered models, like Figure 4.6, are widely used
to show how a system is decomposed into components, with each component
providing significant system functionality.

Web-based and mobile systems are event-based systems. An event in the
user interface, such as a mouse click, triggers the actions to implement the
user’s choice. This means that the flow of control in a layered system is top-
down. User events in the higher layers trigger actions in that layer that, in
turn, trigger events in lower layers. By contrast, most information flows in the

M04_SOME6349_01_GE_C04.indd 102 27/09/2020 14:02

 4.3 ■ System decomposition 103

system are bottom-up. Information is created at lower layers, is transformed
in the intermediate layers, and is finally delivered to users at the top level.

There is often confusion about architectural terminology, words such
as “service,” “component,” and “module.” There are no standard, widely
accepted definitions of these terms, but I try to use them consistently in this
chapter and elsewhere in the book:

1. A service is a coherent unit of functionality. This may mean different
things at different levels of the system. For example, a system may offer
an email service and this email service may itself include services for
creating, sending, reading, and storing email.

2. A component is a named software unit that offers one or more services to
other software components or to the end-users of the software. When used
by other components, these services are accessed through an API. Com-
ponents may use several other components to implement their services.

Figure 4.6 An architectural model of a document retrieval system

User interaction

Web browser

Authentication and
authorization

Form and
query manager

Web page
generation

User interface management

Search Document
retrieval

Rights
management Accounting

Index
management Index querying Index

creation

Local input
validation

Local printing

Information retrieval

Document index

DB1 DB2 DB3 DB4 DB5

Databases

Basic services

Database
query

User account
management

Query
validation Logging

Payments

M04_SOME6349_01_GE_C04.indd 103 27/09/2020 14:02

104 Chapter 4 ■ Software Architecture

3. A module is a named set of components. The components in a module
should have something in common. For example, they may provide a set
of related services.

Complexity in a system architecture arises because of the number and the
nature of the relationships among components in that system. I discuss this
in more detail in Chapter 8. When you change a program, you have to under-
stand these relationships to know how changes to one component affect other
components. When decomposing a system into components, you should try
to avoid introducing unnecessary complexity into the software.

Components have different types of relationships with other components
(Figure 4.7). Because of these relationships, when you make a change to one
component, you often need to make changes to several other components.

Figure 4.7 shows four types of component relationship:

1. Part-of One component is part of another component. For example, a
function or method may be part of an object.

2. Uses One component uses the functionality provided by another
component.

3. Is-located-with One component is defined in the same module or object
as another component.

4. Shares-data-with A component shares data with another component.

As the number of components increases, the number of relationships tends
to increase at a faster rate. This is the reason large systems are more complex
than small systems. It is impossible to avoid complexity increasing with the

Figure 4.7 Examples of component relationships

C2
C1

C1 is-part-of C2

C1

C2

calls

C1 uses C2

C1 C2

C1 C2C1

C1 is-located-with C2

data

C1 shares-data-with C2

M04_SOME6349_01_GE_C04.indd 104 27/09/2020 14:02

 4.3 ■ System decomposition 105

size of the software. However, you can control architectural complexity by
doing two things:

1. Localize relationships If there are relationships between components A
and B (say), they are easier to understand if A and B are defined in the
same module. You should identify logical component groupings (such as
the layers in a layered architecture) with relationships mostly within a
component group.

2. Reduce shared dependencies Where components A and B depend on
some other component or data, complexity increases because changes to
the shared component mean you have to understand how these changes
affect both A and B. It is always preferable to use local data wherever
possible and to avoid sharing data if you can.

Three general design guidelines help to control complexity, as shown in
Figure 4.8.

The separation of concerns guideline suggests that you should identify rel-
evant architectural concerns in groupings of related functionality. Examples of
architectural concerns are user interaction, authentication, system monitoring,
and database management. Ideally, you should be able to identify the com-
ponents or groupings of components in your architecture that are related to
each concern. At a lower level, separation of concerns means that components
should, ideally, do only one thing. I cover separation of concerns in more
detail in Chapter 8.

Figure 4.8 Architectural design guidelines

Design
guidelines

Separation of concerns
Organize your architecture

into components that focus on
a single concern.

Implement once
Avoid duplicating

functionality at different
places in your architecture.

Stable interfaces
Design component

interfaces that are coherent
and that change slowly.

M04_SOME6349_01_GE_C04.indd 105 27/09/2020 14:02

106 Chapter 4 ■ Software Architecture

The implement once guideline suggests that you should not duplicate
functionality in your software architecture. This is important, as duplication
can cause problems when changes are made. If you find that more than one
architectural component needs or provides the same or a similar service, you
should reorganize your architecture to avoid duplication.

You should never design and implement software where components know
of and rely on the implementation of other components. Implementation
dependencies mean that if a component is changed, then the components that
rely on its implementation also have to be changed. Implementation details
should be hidden behind a component interface (API).

The stable interfaces guideline is important so that components that use an
interface do not have to be changed because the interface has changed.

Layered architectures, such as the document retrieval system architecture
shown in Figure 4.6, are based on these general design guidelines:

1. Each layer is an area of concern and is considered separately from other
layers. The top layer is concerned with user interaction, the next layer
down with user interface management, the third layer with information
retrieval, and so on.

2. Within each layer, the components are independent and do not overlap in
functionality. The lower layers include components that provide general
functionality, so there is no need to replicate this in the components in a
higher level.

3. The architectural model is a high-level model that does not include imple-
mentation information. Ideally, components at level X (say) should only
interact with the APIs of the components in level X-1; that is, interactions
should be between layers and not across layers. In practice, however,
this is often impossible without code duplication. The lower levels of the
stack of layers provide basic services that may be required by components
that are not in the immediate level above them. It makes no sense to add
additional components in a higher layer if these are used only to access
lower-level components.

Layered models are informal and are easy to draw and understand. They can be
drawn on a whiteboard so that the whole team can see how the system is decom-
posed. In a layered model, components in lower layers should never depend on
higher-level components. All dependencies should be on lower-level components.
This means that if you change a component at level X in the stack, you should not
have to make changes to components at lower levels in the stack. You only have
to consider the effects of the change on components at higher levels.

M04_SOME6349_01_GE_C04.indd 106 27/09/2020 14:02

 4.3 ■ System decomposition 107

The layers in the architectural model are not components or modules but
are simply logical groupings of components. They are relevant when you
are designing the system, but you can’t normally identify these layers in the
system implementation.

The general idea of controlling complexity by localizing concerns within
a single layer of an architecture is a compelling one. If you can do this, you
don’t have to change components in other layers when components in any
one layer are modified. Unfortunately, there are two reasons why localizing
concerns may not always be possible:

1. For practical reasons of usability and efficiency, it may be necessary to
divide functionality so that it is implemented in different layers.

2. Some concerns are cross-cutting concerns and have to be considered at
every layer in the stack.

You can see an example of the problem of practical separation of concerns
in Figure 4.6. The top layer includes “Local input validation” and the fifth
layer in the stack includes “Query validation.” The “validation concern” is not
implemented in a single lower-level server component because this is likely
to generate too much network traffic.

If user data validation is a server rather than a browser operation, this requires
a network transaction for every field in a form. Obviously, this slows the system
down. Therefore, it makes sense to implement some local input checking, such as
date checking, in the user’s browser or mobile app. Some checking, however, may
require knowledge of database structure or a user’s permissions, and this can be
carried out only when all of the form has been completed. As I explain in Chapter 7,
the checking of security-critical fields should also be a server-side operation.

Cross-cutting concerns are systemic concerns; that is, they affect the whole
system. In a layered architecture, cross-cutting concerns affect all layers in the
system as well as the way in which people use the system. Figure 4.9 shows

Figure 4.9 Cross-cutting concerns

Security

User interface

Application

Infrastructure

Operating system

Hardware

Performance Reliability

M04_SOME6349_01_GE_C04.indd 107 27/09/2020 14:02

108 Chapter 4 ■ Software Architecture

three cross-cutting concerns—security, performance and reliability—that are
important for software products.

Cross-cutting concerns are completely different from the functional con-
cerns represented by layers in a software architecture. Every layer has to take
them into account, and there are inevitably interactions between the layers
because of these concerns. These cross-cutting concerns make it difficult to
improve system security after it has been designed. Table 4.5 explains why
security cannot be localized in a single component or layer.

Let’s assume that you are a software architect and you want to organize your
system into a series of layers to help control complexity. You are then faced
with the general question “Where do I start?”. Fortunately, many software
products that are delivered over the web have a common layered structure
that you can use as a starting point for your design. This common structure is
shown in Figure 4.10. The functionality of the layers in this generic layered
architecture is explained in Table 4.6.

For web-based applications, the layers shown in Figure 4.10 can be the
starting point for your decomposition process. The first stage is to think about
whether this five-layer model is the right one or whether you need more or
fewer layers. Your aim should be for layers to be logically coherent, so that
all components in a layer have something in common. This may mean that
you need one or more additional layers for your application-specific func-
tionality. Sometimes you may wish to have authentication in a separate layer,
and sometimes it makes sense to integrate shared services with the database
management layer.

Security architecture

Different technologies are used in different layers, such as an SQL database or a Firefox
browser. Attackers can try to use vulnerabilities in these technologies to gain access.
Consequently, you need protection from attacks at each layer as well as protection at
lower layers in the system from successful attacks that have occurred at higher-level
layers.

If there is only a single security component in a system, this represents a critical system
vulnerability. If all security checking goes through that component and it stops working
properly or is compromised in an attack, then you have no reliable security in your
system. By distributing security across the layers, your system is more resilient to attacks
and software failure (remember the Rogue One example earlier in the chapter).

Table 4.5 Security as a cross-cutting concern

M04_SOME6349_01_GE_C04.indd 108 27/09/2020 14:02

 4.3 ■ System decomposition 109

Once you have figured out how many layers to include in your system, you
can start to populate these layers. In my experience, the best way to do this is
to involve the whole team and try out various decompositions to help under-
stand their advantages and disadvantages. This is a trial-and-error process; you
stop when you have what seems to be a workable decomposition architecture.

Layer Explanation

Browser-based or mobile user
interface

A web browser system interface in which HTML
forms are often used to collect user input.
Javascript components for local actions, such as
input validation, should also be included at this
level. Alternatively, a mobile interface may be
implemented as an app.

Authentication and UI
management

A user interface management layer that may
include components for user authentication and
web page generation.

Application-specific
functionality

An “application” layer that provides functionality of
the application. Sometimes this may be expanded
into more than one layer.

Basic shared services A shared services layer that includes components
that provide services used by the application layer
components.

Database and transaction
management

A database layer that provides services such as
transaction management and recovery. If your
application does not use a database, then this may
not be required.

Table 4.6 Layer functionality in a web-based application

Figure 4.10 A generic layered architecture for a web-based application

Authentication and user interaction management

Browser-based or mobile user interface

Application-specific functionality

Transaction and database management

Basic shared services

M04_SOME6349_01_GE_C04.indd 109 27/09/2020 14:02

110 Chapter 4 ■ Software Architecture

The discussion about system decomposition may be driven by fundamental
principles that should apply to the design of your application system. These
set out goals that you wish to achieve. You can then evaluate architectural
design decisions against these goals. For example, Table 4.7 shows the prin-
ciples that we thought were most important when designing the iLearn system
architecture.

Our goal in designing the iLearn system was to create an adaptable, univer-
sal system that could be updated easily as new learning tools became avail-
able. This means it must be possible to change and replace components and
services in the system (principles 1 and 2). Because the potential system users
ranged in age from 3 to 18, we needed to provide age-appropriate user inter-
faces and make it easy to choose an interface (principle 3). Principle 4 also
contributes to system adaptability, and principle 5 was included to ensure that
this adaptability did not adversely affect users who did not require it.

Unfortunately, principle 1 may sometimes conflict with principle 4. If
you allow users to create new functionality by combining applications, then
these combined applications may not work if one or more of the constituent
applications are replaced. You often have to address this kind of conflict in
architectural design.

These principles led us to an architectural design decision that the iLearn
system should be service-oriented. Every component in the system is a ser-
vice. Any service is potentially replaceable, and new services can be created

Principle Explanation

Replaceability It should be possible for users to replace applications in
the system with alternatives and to add new applications.
Consequently, the list of applications included should not be hard-
wired into the system.

Extensibility It should be possible for users or system administrators to create
their own versions of the system, which may extend or limit the
“standard” system.

Age-appropriate Alternative user interfaces should be supported so that age-
appropriate interfaces for students at different levels can be
created.

Programmability It should be easy for users to create their own applications by
linking existing applications in the system.

Minimum work Users who do not wish to change the system should not have to
do extra work so that other users can make changes.

Table 4.7 iLearn architectural design principles

M04_SOME6349_01_GE_C04.indd 110 27/09/2020 14:02

 4.3 ■ System decomposition 111

by combining existing services. Different services that deliver comparable
functionality can be provided for students of different ages.

Using services means that the potential conflict I identified above is mostly
avoidable. If a new service is created by using an existing service and, sub-
sequently, other users want to introduce an alternative, they may do so. The
older service can be retained in the system, so that users of that service don’t
have to do more work because a newer service has been introduced.

We assumed that only a minority of users would be interested in program-
ming their own system versions. Therefore, we decided to provide a standard
set of application services that had some degree of integration with other ser-
vices. We anticipated that most users would rely on these and would not wish
to replace them. Integrated application services, such as blogging and wiki
services, could be designed to share information and make use of common
shared services. Some users may wish to introduce other services into their
environment, so we also allowed for services that were not tightly integrated
with other system services.

We decided to support three types of application service integration:

1. Full integration Services are aware of and can communicate with other
services through their APIs. Services may share system services and one
or more databases. An example of a fully integrated service is a specially
written authentication service that checks the credentials of system users.

2. Partial integration Services may share service components and databases,
but they are not aware of and cannot communicate directly with other appli-
cation services. An example of a partially integrated service is a Wordpress
service in which the Wordpress system was changed to use the standard
authentication and storage services in the system. Office 365, which can
be integrated with local authentication systems, is another example of a
partially integrated service that we included in the iLearn system.

3. Independent These services do not use any shared system services or data-
bases, and they are unaware of any other services in the system. They can
be replaced by any other comparable service. An example of an indepen-
dent service is a photo management system that maintains its own data.

The layered model for the iLearn system that we designed is shown in
Figure 4.11. To support application “replaceability”, we did not base the sys-
tem around a shared database. However, we assumed that fully-integrated
applications would use shared services such as storage and authentication.

M04_SOME6349_01_GE_C04.indd 111 27/09/2020 14:02

112 Chapter 4 ■ Software Architecture

To support the requirement that users should be able to configure their own
version of an iLearn system, we introduced an additional layer into the sys-
tem, above the application layer. This layer includes several components that
incorporate knowledge of the installed applications and provide configuration
functionality to end-users.

The system has a set of pre-installed application services. Additional
application services can be added or existing services replaced by using the
application configuration facilities. Most of these application services are
independent and manage their own data. Some services are partially inte-
grated, however, which simplifies information sharing and allows more
detailed user information to be collected.

The fully integrated services have to be specially written or adapted from
open-source software. They require knowledge of how the system is used

Figure 4.11 A layered architectural model of the iLearn system

Authentication Logging and monitoring Application interfacing

User storage Application storage Search

Shared infrastructure services

Integrated services

Application services

Configuration services

User interface management

User analyticsResource discovery

Group
configuration

Application
configuration

Security
configuration

User interface

Web browser iLearn app

Interface creation Forms management Interface delivery

Archive access

Blog Wiki Spreadsheet Presentation Drawing

User-installed
applications

Email and
messaging

Video conf.Word processor

User interface
configuration

Setup
service

Virtual learning
environment

Authentication and
authorization

Login

M04_SOME6349_01_GE_C04.indd 112 27/09/2020 14:02

 4.4 ■ Distribution architecture 113

and access to user data in the storage system. They may make use of other
services at the same level. For example, the user analytics service provides
information about how individual students use the system and can highlight
problems to teachers. It needs to be able to access both log information and
student records from the virtual learning environment.

System decomposition has to be done in conjunction with choosing tech-
nologies for your system (see Section 4.5). The reason for this is that the
choice of technology used in a particular layer affects the components in the
layers above. For example, you may decide to use a relational database tech-
nology as the lowest layer in your system. This makes sense if you are dealing
with well-structured data. However, your decision affects the components to
be included in the services layer because you need to be able to communicate
with the database. You may have to include components to adapt the data
passed to and from the database.

Another important technology-related decision is the interface technolo-
gies that you will use. This choice depends on whether you will be supporting
browser interfaces only (often the case with business systems) or you also
want to provide interfaces on mobile devices. If you are supporting mobile
devices, you need to include components to interface with the relevant iOS
and Android UI development toolkits.

4.4 Distribution architecture

The majority of software products are now web-based products, so they have
a client–server architecture. In this architecture, the user interface is imple-
mented on the user’s own computer or mobile device. Functionality is dis-
tributed between the client and one or more server computers. During the
architectural design process, you have to decide on the “distribution architec-
ture” of the system. This defines the servers in the system and the allocation
of components to these servers.

Client–server architectures are a type of distribution architecture that is
suited to applications in which clients access a shared database and business
logic operations on those data. Figure 4.12 shows a logical view of a client–
server architecture that is widely used in web-based and mobile software
products. These applications include several servers, such as web servers and
database servers. Access to the server set is usually mediated by a load bal-
ancer, which distributes requests to servers. It is designed to ensure that the
computing load is evenly shared by the set of servers.

M04_SOME6349_01_GE_C04.indd 113 27/09/2020 14:02

114 Chapter 4 ■ Software Architecture

The client is responsible for user interaction, based on data passed to and
from the server. When this architecture was originally devised, clients were
character terminals with hardly any local processing capability. The server
was a mainframe computer. All processing was carried out on the server, with
the client handling only user interaction. Now clients are computers or mobile
devices with lots of processing power, so most applications are designed to
include significant client-side processing.

Client–server interaction is usually organized using what is called the Model-
View-Controller (MVC) pattern. This architectural pattern is used so that client
interfaces can be updated when data on the server change (Figure 4.13).

The term “model” is used to mean the system data and the associated busi-
ness logic. The model is always shared and maintained on the server. Each client
has its own view of the data, with views responsible for HTML page generation
and forms management. There may be several views on each client in which
the data are presented in different ways. Each view registers with the model so
that when the model changes, all views are updated. Changing the information
in one view leads to all other views of the same information being updated.

User inputs that change the model are handled by the controller. The con-
troller sends update requests to the model on the server. It may also be respon-
sible for local input processing, such as data validation.

The MVC pattern has many variants. In some, all communication between
the view and the model goes through the controller. In others, views can also
handle user inputs. However, the essence of all of these variants is that the
model is decoupled from its presentation. It can, therefore, be presented in
different ways and each presentation can be independently updated when
changes to the data are made.

Figure 4.12 Client–server architecture

Client 1

Client 2

Client 3

Client ...

Servers

request

response

request

request

request

response

response

response

Load
balancer

M04_SOME6349_01_GE_C04.indd 114 27/09/2020 14:02

 4.4 ■ Distribution architecture 115

For web-based products, Javascript is mostly used for client-side program-
ming. Mobile apps are mostly developed in Java (Android) and Swift (iOS). I
don’t have experience in mobile app development, so I focus here on web-based
products. However, the underlying principles of interaction are the same.

Client–server communication normally uses the HTTP protocol, which is
a text-based request/response protocol. The client sends a message to the
server that includes an instruction such as GET or POST along with the identi-
fier of a resource (usually a URL) on which that instruction should operate.
The message may also include additional information, such as information
collected from a form. So, a database update may be encoded as a POST
instruction, an identifier for the information to be updated plus the changed
information input by the user. Servers do not send requests to clients, and
clients always wait for a response from the server.2

HTTP is a text-only protocol, so structured data must be represented as text.
Two ways of representing these data are widely used—namely, XML and JSON.
XML is a markup language with tags used to identify each data item. JSON is

2This is not strictly true if a technology such as Node.js is used to build server-side applications.
This allows both clients and servers to generate requests and responses. However, the general
client–server model still applies.

Figure 4.13 The Model-View-Controller pattern

Browser

Controller View

Model

Page to displayUser inputs

SERVER

CLIENT

View refresh
request

Change
notification

View update
request

User changes

M04_SOME6349_01_GE_C04.indd 115 27/09/2020 14:03

116 Chapter 4 ■ Software Architecture

a simpler representation based on the representation of objects in the Javascript
language. Usually JSON representations are more compact and faster to parse
than XML text. I recommend that you use JSON for data representation.

As well as being faster to process than XML, JSON is easier for people to
read. Program 4.1 shows the JSON representation of cataloging information
about a software engineering textbook.

There are good JSON tutorials available on the web, so I don’t go into more
detail about this notation.

Many web-based applications use a multi-tier architecture with several commu-
nicating servers, each with its own responsibilities. Figure 4.14 illustrates the dis-
tributed components in a multi-tier web-based system architecture. For simplicity, I
assume there is only a single instance of each of these servers and so a load balancer
is not required. Web-based applications usually include three types of server:

1. A web server that communicates with clients using the HTTP protocol.
It delivers web pages to the browser for rendering and processes HTTP
requests from the client.

2. An application server that is responsible for application-specific opera-
tions. For example, in a booking system for a theater, the application
server provides information about the shows as well as basic functionality
that allows a theatergoer to book seats for shows.

3. A database server that manages the system data and transfers these data
to and from the system database.

Program 4.1 An example of JSON information representation

{

"book": [

{

“title”: ”Software Engineering”,

"author": “Ian Sommerville”,

“publisher”: “Pearson Higher Education”,

“place”: “Hoboken, NJ”,

 “year”: “2015”,

"edition": “10th”,

 “ISBN”: “978-0-13-394303-0”

},

]

}

M04_SOME6349_01_GE_C04.indd 116 27/09/2020 14:03

 4.4 ■ Distribution architecture 117

Sometimes a multi-tier architecture may use additional specialized servers.
For example, in a theater booking system, the user’s payments may be handled
by a credit card payment server provided by a company that specializes in
credit card payments. This makes sense for most e-commerce applications, as
a high cost is involved in developing a trusted payment system. Another type
of specialized server that is commonly used is an authentication server. This
checks users’ credentials when they log in to the system.

An alternative to a multi-tier client–server architecture is a service-oriented
architecture (Figure 4.15) where many servers may be involved in providing
services. Services in a service-oriented architecture are stateless components,
which means that they can be replicated and can migrate from one computer
to another. A service-oriented architecture is usually easier to scale as demand
increases and is resilient to failure.

The services shown in Figure 4.15 are services that support features in
the system. These are the services provided by the application layer and lay-
ers above this in the decomposition stack. To keep the diagram simple, I do
not show interactions between services or infrastructure services that provide
functionality from lower levels in the decomposition. Service-oriented archi-
tectures are increasingly used, and I discuss them in more detail in Chapter 6.

We chose a service-oriented distribution architecture for the iLearn system,
with each of the components shown in Figure 4.11 implemented as a separate
service. We chose this architecture because we wanted to make it easy to
update the system with new functionality. It also simplified the problem of
adding new, unforeseen services to the system.

Figure 4.14 Multi-tier client–server architecture

Web server Application
server

Database
server

Client 1

Client 2

Client 3

Client ...

M04_SOME6349_01_GE_C04.indd 117 27/09/2020 14:03

118 Chapter 4 ■ Software Architecture

Multi-tier and service-oriented architectures are the main types of distri-
bution architecture for web-based and mobile systems. You have to decide
which of these to choose for your software product. The issues that you must
consider are:

1. Data type and data updates If you are mostly using structured data that
may be updated by different system features, it is usually best to have a
single shared database that provides locking and transaction management.
If data are distributed across services, you need a way to keep them con-
sistent, and this adds overhead to your system.

2. Frequency of change If you anticipate that system components will regu-
larly be changed or replaced, then isolating these components as separate
services simplifies those changes.

3. The system execution platform If you plan to run your system on the cloud
with users accessing it over the Internet, it is usually best to implement it
as a service-oriented architecture because scaling the system is simpler.
However, if your product is a business system that runs on local servers,
a multi-tier architecture may be more appropriate.

When I wrote this book in 2018, the distribution architecture of most busi-
ness software products was a multi-tier client–server architecture with user
interaction implemented using the MVC pattern. However, these products are
increasingly being updated to use service-oriented architectures, running on
public cloud platforms. I think that, over time, this type of architecture will
become the norm for web-based software products.

Figure 4.15 Service-oriented architecture

Service
gateway

s1

s2

s3

s4

s5

s6

Services

Web server

Client 1

Client 2

Client 3

Client ...

M04_SOME6349_01_GE_C04.indd 118 27/09/2020 14:03

 4.5 ■ Technology issues 119

4.5 Technology issues

An important part of the process of designing software architecture is to make
decisions about the technologies you will use in your product. The technolo-
gies that you choose affect and constrain the overall architecture of your
system. It is difficult and expensive to change these during development, so
it is important that you carefully consider your technology choices.

An advantage of product development compared to enterprise system
development is that you are less likely to be affected by legacy technology
issues. Legacy technologies are technologies that have been used in old sys-
tems and are still operational. For example, some old enterprise systems still
rely on 1970s database technology. Modern systems may have to interact with
these and this limits their design.

Unless you have to interoperate with other software products sold by your
company, your choice of technology for product development is fairly flex-
ible. Table 4.8 shows some of the important technology choices you may have
to make at an early stage of product development.

4.5.1 Database

Most software products rely on a database system of some kind. Two kinds of
database are now commonly used: relational databases, in which the data are
organized into structured tables, and NoSQL databases, in which the data have

Technology Design decision

Database Should you use a relational SQL database or an unstructured
NoSQL database?

Platform Should you deliver your product on a mobile app and/or a web
platform?

Server Should you use dedicated in-house servers or design your
system to run on a public cloud? If a public cloud, should you use
Amazon, Google, Microsoft, or some other option?

Open source Are there suitable open-source components that you could
incorporate into your products?

Development tools Do your development tools embed architectural assumptions
about the software being developed that limit your architectural
choices?

Table 4.8 Technology choices

M04_SOME6349_01_GE_C04.indd 119 27/09/2020 14:03

120 Chapter 4 ■ Software Architecture

a more flexible, user-defined organization. The database has a huge influence
on how your system is implemented, so which type of database to use is an
important technology choice.

Relational databases, such as MySQL, are particularly suitable for situ-
ations where you need transaction management and the data structures are
predictable and fairly simple. Relational databases support ACID transac-
tions. Transactions guarantee that the database will always remain consistent
even if a transaction fails, that updates will be serialized, and that recovery
to a consistent state is always possible. This is really important for financial
information where inconsistencies are unacceptable. So, if your product deals
with financial information, or any information where consistency is critical,
you should choose a relational database.

However, there are lots of situations where data are not well structured and
where most database operations are concerned with reading and analyzing
data rather than writing to the database. NoSQL databases, such as MongoDB,
are more flexible and potentially more efficient than relational databases for
this type of application. NoSQL databases allow data to be organized hierar-
chically rather than as flat tables, and this allows for more efficient concurrent
processing of “big data.”

Some applications need a mixture of both transactions and big data processing,
and more of this kind of application will likely be developed in the future. Database
vendors are now starting to integrate these approaches. It is likely that, during the
lifetime of this book, efficient integrated database systems will become available.

4.5.2 Delivery platform

Globally, more people access the web using smartphones and tablets rather
than browsers on a laptop or desktop. Most business systems are still browser-
based, but as the workforce becomes more mobile, there is increasing demand
for mobile access to business systems.

In addition to the obvious difference in screen size and keyboard availabil-
ity, there are other important differences between developing software for a
mobile device and developing software that runs on a client computer. On a
phone or tablet, several factors have to be considered:

1. Intermittent connectivity You must be able to provide a limited service
without network connectivity.

2. Processor power Mobile devices have less powerful processors, so you
need to minimize computationally intensive operations.

M04_SOME6349_01_GE_C04.indd 120 27/09/2020 14:03

 4.5 ■ Technology issues 121

3. Power management Mobile battery life is limited, so you should try to
minimize the power used by your application.

4. On-screen keyboard On-screen keyboards are slow and error prone. You
should minimize input using the screen keyboard to reduce user frustration.

To deal with these differences, you usually need separate browser-based
and mobile versions of your product front-end. You may need a completely
different decomposition architecture in these different versions to ensure that
performance and other characteristics are maintained.

As a product developer, you have to decide early in the process whether
you will focus on a mobile or a desktop version of your software. For con-
sumer products, you may decide to focus on mobile delivery, but for business
systems, you have to make a choice about which should be your priority. Try-
ing to develop mobile and browser-based versions of a product at the same
time is an expensive process.

4.5.3 Server

Cloud computing is now ubiquitous so a key decision you have to make is
whether to design your system to run on individual servers or on the cloud. Of
course, it is possible to rent a server from Amazon or some other provider, but
this does not really take full advantage of the cloud. To develop for the cloud,
you need to design your architecture as a service-oriented system and use the
platform APIs provided by the cloud vendor to implement your software.
These allow for automatic scalability and system resilience.

For consumer products that are not simply mobile apps, I think it almost
always makes sense to develop for the cloud. The decision is more difficult for
business products. Some businesses are concerned about cloud security and
prefer to run their systems on in-house servers. They may have a predictable
pattern of system usage, so there is less need to design the software to cope
with large changes in demand.

If you decide to develop for the cloud, the next decision is to choose a cloud
provider. The major providers are Amazon, Google, and Microsoft, but unfor-
tunately their APIs are not compatible. This means you can’t easily move a
product from one to the other. The majority of consumer products probably
run on Amazon’s or Google’s cloud, but businesses often prefer Microsoft’s
Azure system because of its compatibility with their existing .NET software.
Alternatively, there are other cloud providers, such as IBM, that specialize in
business services.

M04_SOME6349_01_GE_C04.indd 121 27/09/2020 14:03

122 Chapter 4 ■ Software Architecture

4.5.4 Open source

Open-source software is software that is freely available and you can change
and modify it as you wish. The obvious advantage is that you can reuse rather
than implement new software, thereby reducing development costs and time
to market. The disadvantages of open-source software are that you are con-
strained by that software and have no control over its evolution. It may be
impossible to change that software to give your product a “competitive edge”
over competitors that use the same software. There are also license issues that
must be considered. They may limit your freedom to incorporate the open-
source software into your product.

The decision about open-source software also depends on the availability,
maturity, and continuing support of open-source components. Using an open-
source database system such as MySQL or MongoDB is cheaper than using
a proprietary database such as Oracle’s database system. These are mature
systems with a large number of contributing developers. You would normally
only choose a proprietary database if your product is aimed at businesses that
already use that kind of database. At higher levels in the architecture, depend-
ing on the type of product you are developing, fewer open-source components
may be available, they may be buggy, and their continuing development may
depend on a relatively small support community.

Your choice of open-source software should depend on the type of product
you are developing, your target market, and the expertise of your development
team. There’s often a mismatch between the “ideal” open-source software
and the expertise that you have available. The ideal software may be better
in the long term but could delay your product launch as your team becomes
familiar with it. You have to decide whether the long-term benefits justify that
delay. There is no point in building a better system if your company runs out
of money before that system is delivered.

4.5.5 Development technology

Development technologies, such as a mobile development toolkit or a web
application framework, influence the architecture of your software. These
technologies have built-in assumptions about system architectures, and you
have to conform to these assumptions to use the development system. For
example, many web development frameworks are designed to create applica-
tions that use the model-view-controller architectural pattern.

M04_SOME6349_01_GE_C04.indd 122 27/09/2020 14:03

 Key points 123

K E Y P O I N T S

■■ Software architecture is the fundamental organization of a system embodied in its
components, their relationships to each other and to the environment, and the principles
guiding its design and evolution.

■■ The architecture of a software system has a significant influence on non-functional system
properties, such as reliability, efficiency, and security.

■■ Architectural design involves understanding the issues that are critical for your product and
creating system descriptions that show components and their relationships.

■■ The principal role of architectural descriptions is to provide a basis for the development
team to discuss the system organization. Informal architectural diagrams are effective in
architectural description because they are fast and easy to draw and share.

■■ System decomposition involves analyzing architectural components and representing them
as a set of finer-grain components.

■■ To minimize complexity, you should separate concerns, avoid functional duplication, and
focus on component interfaces.

■■ Web-based systems often have a common layered structure, including user interface layers,
application-specific layers, and a database layer.

■■ The distribution architecture in a system defines the organization of the servers in that
system and the allocation of components to these servers.

■■ Multi-tier client–server and service-oriented architectures are the most commonly used
architectures for web-based systems.

■■ Making decisions about technologies such as database and cloud technologies is an
important part of the architectural design process.

The development technology that you use may also have an indirect
influence on the system architecture. Developers usually favor architectural
choices that use familiar technologies that they understand. For example, if
your team has a lot of experience with relational databases, they may argue
for this instead of a NoSQL database. This can make sense, as it means the
team does not have to spend time learning about a new system. It can have
long-term negative consequences, however, if the familiar technology is not
the right one for your software.

M04_SOME6349_01_GE_C04.indd 123 27/09/2020 14:03

124 Chapter 4 ■ Software Architecture

R E C O M M E N D E D R E A D I N G

“Software Architecture and Design” This excellent series of articles provides sound, practical
advice on general principles of software architecture and design. It includes a discussion of
layered architectures in Chapter 3, under architectural patterns and styles. (Microsoft, 2010)

https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ee658093(v%3dpandp.10)

“Five Things Every Developer Should Know about Software Architecture” This is a good
explanation of why designing a software architecture is consistent with agile software
development. (S. Brown, 2018)

https://www.infoq.com/articles/architecture-five-things

“Software Architecture Patterns” This is a good general introduction to layered architectures,
although I don’t agree that layered architectures are as difficult to change as the author
suggests. (M. Richards, 2015, login required)

https://www.oreilly.com/ideas/software-architecture-patterns/page/2/layered-architecture

“What is the 3-Tier Architecture?” This is a very comprehensive discussion of the benefits of using
a three-tier architecture. The author argues that is isn’t necessary to use more than three tiers in
any system. (T. Marston, 2012)

http://www.tonymarston.net/php-mysql/3-tier-architecture.html

“Five Reasons Developers Don’t Use UML and Six Reasons to Use It” This article sets out
arguments for using the UML when designing software architectures. (B. Pollack, 2010)

https://saturnnetwork.wordpress.com/2010/10/22/
five-reasons-developers-dont-use-uml-and-six-reasons-to-use-it/

“Mobile vs. Desktop: 10 key differences” This blog post summarizes the issues to be considered
when designing mobile and desktop products. (S. Hart, 2014)

https://www.paradoxlabs.com/blog/mobile-vs-desktop-10-key-differences/

“To SQL or NoSQL? That’s the Database Question” This is a good, short introduction to the pros
and cons of relational and NoSQL databases. (L. Vaas, 2016)

https://arstechnica.com/information-technology/2016/03/
to-sql-or-nosql-thats-the-database-question/

I recommend articles on cloud-computing and service-oriented architecture in Chapters 5 and 6.

P R E S E N T A T I O N S , V I D E O S , A N D L I N K S

https://iansommerville.com/engineering-software-products/software-architecture

M04_SOME6349_01_GE_C04.indd 124 27/09/2020 14:03

https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ee658093(v%3dpandp.10)
https://www.infoq.com/articles/architecture-five-things
https://www.oreilly.com/ideas/software-architecture-patterns/page/2/layered-architecture
http://www.tonymarston.net/php-mysql/3-tier-architecture.html
https://saturnnetwork.wordpress.com/2010/10/22/five-reasons-developers-dont-use-uml-and-six-reasons-to-use-it/
https://www.paradoxlabs.com/blog/mobile-vs-desktop-10-key-differences/
https://arstechnica.com/information-technology/2016/03/to-sql-or-nosql-thats-the-database-question/
https://iansommerville.com/engineering-software-products/software-architecture
https://saturnnetwork.wordpress.com/2010/10/22/five-reasons-developers-dont-use-uml-and-six-reasons-to-use-it/
https://arstechnica.com/information-technology/2016/03/to-sql-or-nosql-thats-the-database-question/

 Exercises 125

E X E R C I S E S

 4.1 Extend the IEEE definition of software architecture to include a definition of the activities
involved in architectural design.

 4.2 An architecture designed to support security may be based on either a centralized model,
where all sensitive information is stored in one secure place, or a distributed model, where
information is spread around and stored in many different places. Suggest one advantage
and one disadvantage of each approach.

 4.3 Why is it important to try to minimize complexity in a software system?

 4.4 You are developing a product to sell to finance companies. Giving reasons for your answer,
consider the issues that affect architectural decision making (Figure 4.4) and suggest
which two factors are likely to be most important.

 4.5 Briefly explain how structuring a software architecture as a stack of functional layers helps
to minimize the overall complexity in a software product.

 4.6 Imagine your manager has asked you whether or not your company should move away from
informal architectural descriptions to more formal descriptions based on the UML. Write
a short report giving advice to your manager. If you don’t know what the UML is, then you
should do a bit of reading to understand it. The article by Pollack in Recommended Reading
can be a starting point for you.

 4.7 Using a diagram, show how the generic architecture for a web-based application can be
implemented using a multi-tier client–server architecture.

 4.8 Under what circumstances would you push as much local processing as possible onto the
client in a client–server architecture?

 4.9 Explain why it would not be appropriate to use a multi-tier client–server architecture for
the iLearn system.

 4.10 Do some background reading and describe three fundamental differences between
relational and NoSQL databases. Suggest three types of software product that might
benefit from using NoSQL databases, explaining why the NoSQL approach is appropriate.

M04_SOME6349_01_GE_C04.indd 125 27/09/2020 14:03

Cloud-Based Software

The convergence of powerful, multicore computer hardware and high-speed
networking has led to the development of “the cloud.” Put simply, the cloud
is a very large number of remote servers that are offered for rent by compa-
nies that own these servers. You can rent as many servers as you need, run
your software on these servers, and make them available to your customers.
Your customers can access these servers from their own computers or other
networked devices such as a tablet or a TV. You may rent a server and install
your own software, or you may pay for access to software products that are
available on the cloud.

The remote servers are “virtual servers,” which means they are imple-
mented in software rather than hardware. Many virtual servers can run simul-
taneously on each cloud hardware node, using virtualization support that is
built in to the hardware. Running multiple servers has very little effect on
server performance. The hardware is so powerful that it can easily run several
virtual servers at the same time.

Cloud companies such as Amazon and Google provide cloud management
software that makes it easy to acquire and release servers on demand. You
can automatically upgrade the servers that you are running, and the cloud
management software provides resilience in the event of a server failure. You
can rent a server for a contracted amount of time or rent and pay for servers
on demand. Therefore, if you need resources for only a short time, you simply
pay for the time that you need.

The cloud servers that you rent can be started up and shut down as demand
changes. This means that software that runs on the cloud can be scalable,
elastic, and resilient (Figure 5.1). I think that scalability, elasticity, and resil-
ience are the fundamental differences between cloud-based systems and those
hosted on dedicated servers.

5

M05_SOME6349_01_GE_C05.indd 126 27/09/2020 14:03

 Chapter 5 ■ Cloud-Based Software 127

Scalability reflects the ability of your software to cope with increasing num-
bers of users. As the load on your software increases, the software automatically
adapts to maintain the system performance and response time. Systems can be
scaled by adding new servers or by migrating to a more powerful server. If a
more powerful server is used, this is called scaling up. If new servers of the
same type are added, this is called scaling out. If your software is scaled out,
copies of your software are created and executed on the additional servers.

Elasticity is related to scalability but allows for scaling down as well as
scaling up. That is, you can monitor the demand on your application and add
or remove servers dynamically as the number of users changes. This means
that you pay for only the servers you need, when you need them.

Resilience means that you can design your software architecture to toler-
ate server failures. You can make several copies of your software available
concurrently. If one of these fails, the others continue to provide a service.
You can cope with the failure of a cloud data center by locating redundant
servers in different places.

If you are setting up a new software product company or development proj-
ect, it isn’t cost effective to buy server hardware to support software develop-
ment. Rather, you should use cloud-based servers that are accessed from your
development machines. The benefits of adopting this approach rather than
buying your own servers are shown in Table 5.1.

I recommend that using the cloud for both development and product deliv-
ery, as a cloud service, should be the default choice for new software product
development. The only exceptions might be if you are delivering products
for a specialized hardware platform, or your customers have security require-
ments that forbid the use of external systems.

Figure 5.1 Scalability, elasticity, and resilience

Cloud software
characteristics

Elasticity
Adapt the server configuration

to changing demands

Resilience
Maintain service in the
event of server failure

Scalability
Maintain performance as

load increases

M05_SOME6349_01_GE_C05.indd 127 27/09/2020 14:03

128 Chapter 5 ■ Cloud-Based Software

All major software vendors now offer their software as cloud services.
Customers access the remote service through a browser or mobile app rather
than installing it on their own computers. Well-known examples of software
delivered as a service include mail systems such as Gmail and productivity
products such as Office 365.

This chapter introduces some fundamental ideas about cloud-based soft-
ware that you have to consider when making architectural decisions. I explain
the idea of containers as a lightweight mechanism to deploy software. I
explain how software can be delivered as a service, and I introduce general
issues in cloud-based software architecture design. Chapter 6 focuses on a
service-oriented architectural pattern that is particularly relevant to cloud-
based systems—namely, microservices architecture.

5.1 Virtualization and containers

All cloud servers are virtual servers. A virtual server runs on an underlying
physical computer and is made up of an operating system plus a set of soft-
ware packages that provide the server functionality required. The general idea
is that a virtual server is a stand-alone system that can run on any hardware
in the cloud.

This “run anywhere” characteristic is possible because the virtual server
has no external dependencies. An external dependency means you need some

Factor Benefit

Cost You avoid the initial capital costs of hardware procurement.

Startup time You don’t have to wait for hardware to be delivered before
you can start work. Using the cloud, you can have servers up
and running in a few minutes.

Server choice If you find that the servers you are renting are not powerful
enough, you can upgrade to more powerful systems. You
can add servers for short-term requirements, such as load
testing.

Distributed development If you have a distributed development team, working from
different locations, all team members have the same
development environment and can seamlessly share all
information.

Table 5.1 Benefits of using the cloud for software development

M05_SOME6349_01_GE_C05.indd 128 27/09/2020 14:03

 5.1 ■ Virtualization and containers 129

software, such as a database management system, that you are not developing
yourself. For example, if you are developing in Python, you need a Python
compiler, a Python interpreter, various Python libraries, and so on.

When you run software on different computers, you often encounter
problems because some of the external software that you rely on is unavail-
able or is different in some way from the version that you’re using. If you
use a virtual server, you avoid these problems. You load all of the software
that you need, so you are not relying on software being made available by
someone else.

Virtual machines (VMs), running on physical server hardware, can be used
to implement virtual servers (Figure 5.2). The details are complex, but you
can think of the hypervisor as providing a hardware emulation that simulates
the operation of the underlying hardware. Several of these hardware emula-
tors share the physical hardware and run in parallel. You can run an operating
system and then install server software on each hardware emulator.

The advantage of using a virtual machine to implement virtual servers is
that you have exactly the same hardware platform as a physical server. You
can therefore run different operating systems on virtual machines that are
hosted on the same computer. For example, Figure 5.2 shows that Linux and
Windows can run concurrently on separate VMs. You may want to do this so
that you can run software that is available for only one particular operating
system.

Figure 5.2 Implementing a virtual server as a virtual machine

Host OS

Server hardware

Hypervisor

Guest
OS

Server
software

Virtual web
server

Linux

Apache
web server

Guest
OS

Server
software

Virtual mail
server

Windows server

Outlook

M05_SOME6349_01_GE_C05.indd 129 27/09/2020 14:03

130 Chapter 5 ■ Cloud-Based Software

The problem with implementing virtual servers on top of VMs is that cre-
ating a VM involves loading and starting up a large and complex operating
system (OS). The time needed to install the OS and set up the other software
on the VM is typically between 2 and 5 minutes on public cloud providers
such as AWS. This means that you cannot instantly react to changing demands
by starting up and shutting down VMs.

In many cases, you don’t really need the generality of a virtual machine. If
you are running a cloud-based system with many instances of applications or
services, these all use the same operating system. To cater to this situation, a
simpler, lightweight, virtualization technology called “containers” may be used.

Using containers dramatically speeds up the process of deploying virtual
servers on the cloud. Containers are usually megabytes in size, whereas VMs
are gigabytes. Containers can be started up and shut down in a few seconds
rather than the few minutes required for a VM. Many companies that provide
cloud-based software have now switched from VMs to containers because
containers are faster to load and less demanding of machine resources.

Containers are an operating system virtualization technology that allows
independent servers to share a single operating system. They are particularly
useful for providing isolated application services where each user sees their
own version of an application. I show this in Figure 5.3, where a graphics

Figure 5.3 Using containers to provide isolated services

Host OS

Server hardware

Container manager

Server
software

Server
software

Application
software

Application
software

Graphics
libraries

Photo manager

Graphics
libraries

Photo manager

Graphic design
software

Graphic design
software

Container 2Container 1

User 2User 1

M05_SOME6349_01_GE_C05.indd 130 27/09/2020 14:03

 5.1 ■ Virtualization and containers 131

design system product uses basic graphics libraries and a photo management
system. A container with the graphics support software and the application is
created for each user of the software.

To create and use a container, you use client software to create the con-
tainer and to load software into that container. You then deploy the container
that you have created onto a Linux server. Using fundamental OS features,
the container management system ensures that the process executing in the
container is completely isolated from all other processes.

Containers are a lightweight mechanism for running applications in the
cloud and are particularly effective for running small applications such as
stand-alone services. At the time of writing this book in 2018, containers are
not the best mechanism for running large, shared databases. If your applica-
tion depends on a large, shared database that provides continuous service,
running this database on a VM is still the best option. VMs and containers
can coexist on the same physical system, so applications running in containers
can access the database efficiently.

Containers were first introduced in the mid-2000s with developments in
the Linux operating system. Several companies, such as Google and Ama-
zon, developed and used their own version of containers to manage large
server clusters. However, containers really became a mainstream technology
around 2015. An open-source project called Docker provided a standard
means of container management that is fast and easy to use. Docker is now
the most widely used container technology, so I discuss the Docker model of
 containers here.

Docker is a container management system that allows users to define the
software to be included in a container as a Docker image. It also includes a
run-time system that can create and manage containers using these Docker
images. Figure 5.4 shows the different elements of the Docker container sys-
tem and their interactions. I explain the function of each of the elements in
the Docker container system in Table 5.2.

Docker images are directories that can be archived, shared, and run on
different Docker hosts. Everything that’s needed to run a software system—
binaries, libraries, system tools, and so on—is included in the directory.
Therefore, the image can act as a stand-alone filesystem for the virtual
server. Because of the way Docker has implemented its filesystem, the
image includes only the files that are different from standard operating sys-
tem files. It does not include all the other operating system files that are
unchanged. Consequently, images are usually compact and therefore fast
to load.

M05_SOME6349_01_GE_C05.indd 131 27/09/2020 14:03

132 Chapter 5 ■ Cloud-Based Software

Element Function

Docker daemon This is a process that runs on a host server and is used to set up,
start, stop, and monitor containers, as well as building and
managing local images.

Docker client This software is used by developers and system managers to
define and control containers.

Dockerfiles Dockerfiles define runnable applications (images) as a series of setup
commands that specify the software to be included in a container.
Each container must be defined by an associated Dockerfile.

Image A Dockerfile is interpreted to create a Docker image, which is a set
of directories with the specified software and data installed in the
right places. Images are set up to be runnable Docker applications.

Docker hub This is a registry of images that has been created. These may be
reused to set up containers or as a starting point for defining new
images.

Containers Containers are executing images. An image is loaded into a container
and the application defined by the image starts execution. Containers
may be moved from server to server without modification and
replicated across many servers. You can make changes to a Docker
container (e.g., by modifying files) but you then must commit these
changes to create a new image and restart the container.

Table 5.2 The elements of the Docker container system

Figure 5.4 The Docker container system

Docker client

Dockerfiles
Docker host

Docker hub

Registries

Docker
daemon

Images

Containers

M05_SOME6349_01_GE_C05.indd 132 27/09/2020 14:03

 5.1 ■ Virtualization and containers 133

The filesystem used in Docker images is called a union filesystem. I don’t go
into details of this here, but it is a bit like an incremental backup, where you sim-
ply add the changed files to your backup. Backup software allows you to merge
them with previous backups to restore your whole filesystem. In a union filesys-
tem, you start with a base filesystem with updates that are specific to an image
layered on top of this base. Each update is added as a new layer. The file system
software integrates the layers so that you have a complete, isolated filesystem.

A Docker image is a base layer, usually taken from the Docker registry,
with your own software and data added as a layer on top. This layered model
means that updating Docker applications is fast and efficient. Each update to the
filesystem is a layer on top of the existing system. To change an application, all
you have to do is ship the changes that you have made to its image, often just a
small number of files. You don’t have to include any files that are unchanged.

When a container is created, the image is loaded and the files in that image
are set as read-only. A read-write layer is added by the Docker daemon to
manage local container information, and various initialization parameters are
set up by the container management system. A process is then initialized to
run the software defined in the image.

Docker includes a mechanism, called a bridge network, that enables contain-
ers to communicate with each other. This means you can create systems made
up of communicating components, each of which runs in its own container.
Consequently, you can quickly deploy a large number of communicating con-
tainers to implement a complex distributed system. You use a management
system such as Kubernates to manage the set of deployed containers.

You don’t need to understand the Docker communication mechanisms to
understand the principles of containers, so I don’t say any more about this.
I include links to information on container communications in the Recom-
mended Reading section.

From a cloud software engineering perspective, containers offer four
important benefits:

1. They solve the problem of software dependencies. You don’t have to
worry about the libraries and other software on the application server
being different from those on your development server. Instead of ship-
ping your product as stand-alone software, you can ship a container that
includes all of the support software that your product needs.

2. They provide a mechanism for software portability across different
clouds. Docker containers can run on any system or cloud provider where
the Docker daemon is available.

M05_SOME6349_01_GE_C05.indd 133 27/09/2020 14:03

134 Chapter 5 ■ Cloud-Based Software

3. They provide an efficient mechanism for implementing software services
and so support the development of service-oriented architectures, which
I cover in Chapter 6.

4. They simplify the adoption of DevOps. This is an approach to software
support where the same team is responsible for both developing and sup-
porting operational software. I cover DevOps in Chapter 10.

5.2 Everything as a service

Very few of us employ a personal, full-time hairdresser. Instead, when we
need a haircut, we “rent” a hairdresser for a while and pay that person to
cut our hair. The hairdresser is providing a hairdressing service, and we pay
for the time we are using that service. The same approach can be applied to
software products. Rather than buy a software product, we can rent it when
we need it.

This idea of a service that is rented rather than owned is fundamental to
cloud computing. Instead of owning hardware, you can rent the hardware
that you need from a cloud provider. If you have a software product, you
can use that rented hardware to deliver the product to your customers. In
cloud computing, this has been developed into the idea of “everything as a
service.”

For software product developers, there are currently three levels where
everything as a service is most relevant. I show these levels in Figure 5.5,
which also includes some examples of possible services at each level.

Figure 5.5 Everything as a service

Cloud data center

Infrastructure as a service

Platform as a service

Software as a service

Storage
Network

Computation
Virtualization

Cloud management
Monitoring

Database
Software development

Photo
editing

Logistics
management

M05_SOME6349_01_GE_C05.indd 134 27/09/2020 14:03

 5.2 ■ Everything as a service 135

1. Infrastructure as a service (IaaS) This is a basic service level that all
major cloud providers offer. They provide different kinds of infrastruc-
ture service, such as a compute service, a network service, and a storage
service. These infrastructure services may be used to implement virtual
cloud-based servers. The key benefits of using IaaS are that you don’t
incur the capital costs of buying hardware and you can easily migrate your
software from one server to a more powerful server. You are responsible
for installing the software on the server, although many preconfigured
packages are available to help with this. Using the cloud provider’s con-
trol panel, you can easily add more servers if you need to as the load on
your system increases.

2. Platform as a service (PaaS) This is an intermediate level where you
use libraries and frameworks provided by the cloud provider to imple-
ment your software. These provide access to a range of functions, includ-
ing SQL and NoSQL databases. Using PaaS makes it easy to develop
auto-scaling software. You can implement your product so that as the
load increases, additional compute and storage resources are added
automatically.

3. Software as a service (SaaS) Your software product runs on the cloud and
is accessed by users through a web browser or mobile app. We all know
and use this type of cloud service—mail services such as Gmail, storage
services such as Dropbox, social media services such as Twitter, and so
on. I discuss SaaS in more detail later in this chapter.

If you are running a small or medium-sized product development company,
it is not cost effective to buy server hardware. If you need development and
testing servers, you can implement these using infrastructure services. You
can set up a cloud account with a credit card and be up and running within a
few minutes. You don’t have to raise capital to buy hardware, and it is easy
to respond to changing demand by upscaling and downscaling your system
on the cloud. You can implement your product on the cloud using PaaS and
deliver your product as a software service.

There are now many companies offering public cloud services to busi-
nesses including large, well-known providers such as Amazon, Google, and
Microsoft. They all use different interfaces and control panels, so I do not
explain the details of acquiring and setting up servers on the cloud. All cloud
providers have introductory tutorials that explain how to do this. I include
links to these tutorials in the Recommended Reading section.

M05_SOME6349_01_GE_C05.indd 135 27/09/2020 14:03

136 Chapter 5 ■ Cloud-Based Software

An important difference between IaaS and PaaS is the allocation of system
management responsibilities. Figure 5.6 shows who has management respon-
sibilities for SaaS, IaaS, and PaaS.

If you are using IaaS, you have the responsibility for installing and manag-
ing the database, the system security, and the application. If you use PaaS, you
can devolve responsibility of managing the database and security to the cloud
provider. In SaaS, assuming that a software vendor is running the system on
a cloud, the software vendor manages the application. Everything else is the
cloud provider’s responsibility.

When clouds were introduced (around 2010), there was a clear distinction
between IaaS and PaaS. Amazon presented Amazon Web Services (AWS) as
IaaS. Google, on the other hand, presented their cloud platform as a PaaS envi-
ronment where you could use Google’s cloud primitives to create auto-scaling
environments and other features. In practice now, there is very little real difference
between these levels, with all cloud providers supporting some form of PaaS.

You may also come across the idea of function as a service (FaaS), which
is supported by Amazon’s Lambda service. In this relatively recent devel-
opment it is possible to implement a cloud service and start this up and
shut it down each time it is used. All you need to do is upload the software
implementing the service to the cloud provider and they create the service
automatically. When it is accessed, a server running this service is automati-
cally started.

FaaS offers two main benefits:

1. You don’t have to manage a server to run your service. The cloud provider
takes full responsibility for this.

Figure 5.6 Management responsibilities for SaaS, IaaS, and PaaS

Basic computational
services

Infrastructure as a service Platform as a service

Basic computational
services

Managed by
cloud vendor

Application services
(database, etc.)

Cloud management
services

Application services
(database, etc.)

Cloud management
services

Software as a service

Managed by
cloud vendor

Managed by
cloud vendor

Managed by
cloud vendor

Managed by
software provider

Managed by
software provider

Managed by
software provider

Managed by
software provider

M05_SOME6349_01_GE_C05.indd 136 27/09/2020 14:03

 5.3 ■ Software as a service 137

2. You pay for only the time that the function is executing rather than rent
the underlying server on which the function runs. This leads to a sig-
nificant savings for services, such as recovery services, that have to be
available on demand and do not run continuously.

Function as a service is a developing area that I think will become increas-
ingly widely used. At the time of writing in 2018, however, it is not suffi-
ciently mature to cover in an introductory textbook.

5.3 Software as a service

When software products were introduced, they had to be installed on the cus-
tomer’s own computers. Sometimes the buyer of the software had to configure
the software to their own operating environment and deal with software updates.
Updated software was not always compatible with other software in the company,
so it was common for software users to run older versions of the product to avoid
these compatibility problems. This meant the software product company some-
times had to maintain several different versions of their product at the same time.

Many software products are still delivered in this way but, increasingly,
software products are being delivered as a service. If you deliver your soft-
ware product as a service, you run the software on your servers, which you
may rent from a cloud provider. Customers don’t have to install software, and
they access the remote system through a web browser or dedicated mobile app
(Figure 5.7). The payment model for SaaS is usually a subscription. Users pay
a monthly fee to use the software rather than buy it outright.

Many software providers deliver their software as a cloud service, but also
allow users to download a version of the software so that they can work with-
out a network connection. For example, Adobe offers the Lightroom photo
management software as both a cloud service and a download that runs on the
user’s own computer. This gets around the problem of reduced performance
due to slow network connections.

For the majority of web-based software products, I think it makes sense for
product developers to deliver these as a service. Table 5.3 shows the benefits
of this approach for product providers.

Customers benefit from SaaS by avoiding large up-front payments for software
and always having access to the latest version. However, some disadvantages in
this delivery model dissuade many people from using software that is delivered
in this way. These advantages and disadvantages are shown in Figure 5.8.

M05_SOME6349_01_GE_C05.indd 137 27/09/2020 14:03

138 Chapter 5 ■ Cloud-Based Software

Figure 5.7 Software as a service

Cloud infrastructure

Software services

Cloud provider

Software provider

Software customers

Benefit Explanation

Cash flow Customers either pay a regular subscription or pay as they
use the software. This means you have a regular cash flow,
with payments throughout the year. You don’t have a
situation where you have a large cash injection when
products are purchased but very little income between
product releases.

Update management You are in control of updates to your product, and all
customers receive the update at the same time. You avoid
the issue of several versions being simultaneously used and
maintained. This reduces your costs and makes it easier to
maintain a consistent software code base.

Continuous deployment You can deploy new versions of your software as soon as
changes have been made and tested. This means you can
fix bugs quickly so that your software reliability can
continuously improve.

Payment flexibility You can have several different payment options so that you
can attract a wider range of customers. Small companies or
individuals need not be discouraged by having to pay large
upfront software costs.

Try before you buy You can make early free or low-cost versions of the software
available quickly with the aim of getting customer feedback
on bugs and how the product could be approved.

Data collection You can easily collect data on how the product is used and so
identify areas for improvement. You may also be able to collect
customer data that allow you to market other products to
these customers.

Table 5.3 Benefits of SaaS for software product providers

M05_SOME6349_01_GE_C05.indd 138 27/09/2020 14:03

 5.3 ■ Software as a service 139

Figure 5.8 Advantages and disadvantages of SaaS for customers

Software
customer

No upfront costs
for software or

servers

Disadvantages

Reduced software
management costs

Advantages

 Immediate
software updates

Mobile, laptop, and
desktop access

Privacy
regulation

conformance

Network constraints

Security concerns

Loss of control
over updates

Service lock-in

Data exchange

One of the most significant business benefits of using SaaS is that cus-
tomers do not incur the capital costs of buying servers or the software itself.
Customer cash flow is improved with software being a monthly operational
cost rather than a significant capital expenditure. To maintain access to a
service-based software product, however, customers have to continue to pay,
even if they rarely use the software. This contrasts with software that you can
buy for a one-off payment. Once you have bought this software, you can keep
it as long as you wish without further payments.

The universal use of mobile devices means that customers want to access
software from these devices as well as from desktop and laptop computers.
Delivering SaaS means that customers can access the software from any plat-
form at any time. People can use the software from multiple devices without
having to install the software in advance. However, this may mean that soft-
ware developers have to develop mobile apps for a range of platforms in order
to maintain their customer base.

A further benefit of SaaS for customers is that they don’t have to employ
staff to install and update the system. This transfers the problems of ensuring
a reliable and consistent service to the SaaS provider rather than local system
administrators. However, this may lead to a loss of local expertise. A lack of
expertise may make it more difficult for customers to revert to self-hosted
software if they need to do so.

A characteristic of SaaS is that updates can be delivered quickly. New fea-
tures are immediately available to all customers. As I explain in Chapter 10,
many companies now practice continuous deployment where new versions

M05_SOME6349_01_GE_C05.indd 139 27/09/2020 14:03

140 Chapter 5 ■ Cloud-Based Software

of the software are delivered every day. Customers have no control over
when software upgrades are installed, however. If incompatibilities with the
customer’s way of working are introduced in an update, they have to make
immediate changes to continue using the software.

Other disadvantages of SaaS are related to storage and data management
issues (Table 5.4). These are important to some customers, especially large
multinational companies. They are the fundamental reasons some companies
remain reluctant to use cloud-based software and prefer to run software on
their own servers.

If you are developing a system that does not deal with personal and finan-
cial information, SaaS is usually the best way to deliver your software product.
Where national or international data protection regulations apply, however,
the choice is more difficult. You must use a cloud provider that stores data in
permitted locations. If this is impractical, you may have to provide customer-
installed software, where the data are stored on the customer’s own servers.

In some ways, developing software as a service is no different from devel-
oping software with a browser interface that runs on organizational servers.
In those situations, however, you can make assumptions about the available
network speed and bandwidth, the electric power available, and the users of

Issue Explanation

Regulation Some countries, such as EU countries, have strict laws on the
storage of personal information. These may be incompatible with
the laws and regulations of the country where the SaaS provider
is based. If an SaaS provider cannot guarantee that their storage
locations conform to the laws of the customer’s country, businesses
may be reluctant to use their product.

Data transfer If software use involves a lot of data transfer, the software
response time may be limited by the network speed. This is a
problem for individuals and smaller companies who can’t afford to
pay for very high speed network connections.

Data security Companies dealing with sensitive information may be unwilling
to hand over the control of their data to an external software
provider. As we have seen from a number of high-profile cases,
even large cloud providers have had security breaches. You
can’t assume that they always provide better security than the
customer’s own servers.

Data exchange If you need to exchange data between a cloud service and other
services or local software applications, this can be difficult unless
the cloud service provides an API that is accessible for external
use.

Table 5.4 Data storage and management issues for SaaS

M05_SOME6349_01_GE_C05.indd 140 27/09/2020 14:03

 5.3 ■ Software as a service 141

the system. For SaaS, your customers are from different organizations. They
access the system on unknown devices, so you need to design your software to
take this into account. Factors that you have to consider are shown in Figure 5.9.

A software product may be designed so that some features are executed
locally in the user’s browser or mobile app and some on a remote server.
Local execution reduces network traffic and so increases user response speed.
This is useful when users have a slow network connection. However, local
processing increases the electric power needed to run the system. This is not
a problem if there is a connection to grid or mains power, but it is an issue
when battery-powered mobile devices are used to access the application. The
best way to distribute local and remote processing depends on the type of
application and the expected usage of the system. Consequently, it is difficult
to give general advice on this topic apart from “experiment and be prepared
to change.”

On all shared systems, users have to authenticate themselves to show that
they are accredited to use the system. You can set up your own authentication
system, but this means users have to remember another set of authentication
credentials. People don’t like this, so for individual users, many systems allow
authentication using the user’s Google, Facebook, or LinkedIn credentials.
However, this is not usually acceptable for businesses that prefer their users
to authenticate using their business credentials. You may need to set up a
federated authentication system that delegates authentication to the business
where the user works. I explain federated authentication in Chapter 7.

Information leakage is a particular risk for cloud-based software. If you
have multiple users from multiple organizations, a security risk is that infor-
mation leaks from one organization to another. This can happen in a number

Figure 5.9 Design issues for SaaS

SaaS design
issues

Local/remote processing Authentication

Information leakage Multi-tenant or multi-instance
database management

M05_SOME6349_01_GE_C05.indd 141 27/09/2020 14:03

142 Chapter 5 ■ Cloud-Based Software

of different ways, so you need to be very careful in designing your security
system to avoid it.

Multi-tenancy means that the system maintains the information from differ-
ent organizations in a single repository rather than maintaining separate copies
of the system and database. This can lead to more efficient operation. How-
ever, the developer has to design software so that each organization sees a
virtual system that includes its own configuration and data. In a multi-instance
system, each customer has their own instance of the software and its database.

5.4 Multi-tenant and multi-instance systems

Many cloud-based systems are multi-tenant systems, in which all customers
are served by a single instance of the system and a multi-tenant database.
Business users interact with what appears to be a dedicated system for their
company. The database is partitioned so that customer companies have their
own space and can store and access their own data.

An alternative SaaS implementation is to provide a separate copy of the
system and database for each user. These are called multi-instance systems. I
discuss these in Section 5.4.2.

5.4.1 Multi-tenant systems

In a multi-tenant database, a single database schema, defined by the SaaS
provider, is shared by all of the system’s users. Items in the database are
tagged with a tenant identifier, representing a company that has stored data in
the system. The database access software uses this tenant identifier to provide
“logical isolation,” which means that users seem to be working with their own
database. Figure 5.10 illustrates this situation using a simplified stock man-
agement database table. The tenant identifier (column 1) is used to identify
the rows in the database that are exclusive to that tenant.

The advantages and disadvantages of using a multi-tenant database are
shown in Table 5.5.

Mid-size and large businesses that are buying software as a service rarely
want to use generic multi-tenant software. They want a version of the software
that is adapted to their own requirements and that presents their staff with a
customized version of the software. Table 5.6 summarizes some business
requirements for the customization of SaaS.

M05_SOME6349_01_GE_C05.indd 142 27/09/2020 14:03

 5.4 ■ Multi-tenant and multi-instance systems 143

Table 5.5 Advantages and disadvantages of multi-tenant databases

Advantages Disadvantages

Resource utilization
The SaaS provider has control of all the
resources used by the software and can
optimize the software to make effective
use of these resources.

Inflexibility
Customers must all use the same database
schema with limited scope for adapting
this schema to individual needs. I explain
possible database adaptations later in this
section.

Security
Multi-tenant databases have to be
designed for security because the data
for all customers are held in the same
database. They are, therefore, likely to
have fewer security vulnerabilities than
standard database products. Security
management is also simplified as there
is only a single copy of the database
software to be patched if a security
vulnerability is discovered.

Security
As data for all customers are maintained in
the same database, there is a theoretical
possibility that data will leak from one
customer to another. In fact, there are
very few instances of this happening. More
seriously, perhaps, if there is a database
security breach, then it affects all customers.

Update management
It is easier to update a single instance of
software rather than multiple instances.
Updates are delivered to all customers
at the same time so all use the latest
version of the software.

Complexity
Multi-tenant systems are usually more
complex than multi-instance systems
because of the need to manage many
users. There is, therefore, an increased
likelihood of bugs in the database software.

Figure 5.10 An example of a multi-tenant database

Stock management

 Tenant Key Item Stock Supplier Ordered

T516 100 Widg 1 27 S13 2017/2/12

T632 100 Obj 1 5 S13 2017/1/11

T973 100 Thing 1 241 S13 2017/2/7

T516 110 Widg 2 14 S13 2017/2/2

T516 120 Widg 3 17 S13 2017/1/24

T973 100 Thing 2 132 S26 2017/2/12

In a multi-tenant system, where all users share a single copy of the system,
providing these features means that the software’s user interface and access
control system have to be configurable and it must be possible to create “vir-
tual databases” for each business customer.

M05_SOME6349_01_GE_C05.indd 143 27/09/2020 14:03

144 Chapter 5 ■ Cloud-Based Software

User interface configurability is relatively easy to implement by using user pro-
files for each customer (Figure 5.11). This user profile includes information about
how the system should look to users and security profiles that define the access
permissions of both the organization and individual users. The figure shows pro-
files for all companies, but co2 and co5 do not have any logged-in users.

Customization Business need

Authentication Businesses may want users to authenticate using their business
credentials rather than the account credentials set up by
the software provider. I explain in Chapter 7 how federated
authentication makes this possible.

Branding Businesses may want a user interface that is branded to reflect
their own organization.

Business rules Businesses may want to be able to define their own business rules
and workflows that apply to their own data.

Data schemas Businesses may want to be able to extend the standard data model
used in the system database to meet their own business needs.

Access control Businesses may want to be able to define their own access control
model that sets out the data that specific users or user groups can
access and the allowed operations on that data.

Table 5.6 Possible customizations for SaaS

Figure 5.11 User profiles for SaaS access

SaaS
application

Profile
co1

Profile
co2

Profile
co3

Profile
co4

Profile
co6

Profile
co5

co1 user co1 user co1 user

co4 user co4 user co4 user

co6 user

co6 user

co3 user

co3 user

co3 user

co4 user

M05_SOME6349_01_GE_C05.indd 144 27/09/2020 14:03

 5.4 ■ Multi-tenant and multi-instance systems 145

When a SaaS product detects that the user is from a particular organization,
it looks for the user profile for that organization. The software uses profile
information to create a personalized version of the interface to be presented
to users. To detect a user, you can ask them to either select their organization
or provide their business email address. As well as a business profile, there
may also be an individual profile for each user that defines what features and
system data they are allowed to access.

The user interface is designed using generic elements, such as the com-
pany name and logo. At run time, web pages are generated by replacing these
generic elements with the company name and logo taken from the profile
associated with each user. Menus may also be adapted, with some features
disabled if they are not needed by the user’s business.

Individual users are usually happy to accept a shared fixed schema in a multi-
tenant database and adapt their work to fit that schema. However, corporate users
may wish to extend or adapt the schema to meet their specific business needs.
There are two ways to do this if you are using a relational database system:

1. Add a number of extra fields to each table and allow customers to use
these fields as they wish.

2. Add a field to each table that identifies a separate “extension table,” and
allow customers to create these extension tables to reflect their needs.

I illustrate these situations in Figures 5.12 and 5.13.
It is relatively easy to extend the database by providing additional fields.

You add some extra columns to each database table and define a customer

Figure 5.12 Database extensibility using additional fields

 Tenant Key Item Stock Supplier Ordered Ext 1 Ext 2 Ext 3

T516 100 Widg 1 27 S13 2017/2/12

T632 100 Obj 1 5 S13 2017/1/11

T973 100 Thing 1 241 S13 2017/2/7

T516 110 Widg 2 14 S13 2017/2/2

T516 120 Widg 3 17 S13 2017/1/24

T973 100 Thing 2 132 S26 2017/2/12

Stock management

M05_SOME6349_01_GE_C05.indd 145 27/09/2020 14:03

146 Chapter 5 ■ Cloud-Based Software

profile that maps the column names that the customer wants to these extra
columns. However, this approach has two major problems:

1. It is difficult to know how many extra columns you should include. If you
have too few, customers will find that there aren’t enough for what they
need to do. However, if you cater to customers who need a lot of extra
columns, you will find that most customers don’t use them, so you will
have a lot of wasted space in your database.

Figure 5.13 Database extensibility using tables

 Tenant ID Stock Supplier Ordered Ext 1

T516 100 27 S13 2017/2/12

T632 100 5 S13 2017/1/11

T973 100 241 S13 2017/2/7

T516 110 14 S13 2017/2/2

T516 120 17 S13 2017/1/24

T973 100

Item

Widg 1

Obj 1

Thing 1

Widg 2

Widg 3

Thing 2 132 S26 2017/2/12

E123

E200

E346

E124

E125

E347

Tenant Name Type

T516

T516

T516

T632

T632

T973 ‘Delivered’ Date

‘Location’

‘Weight’

‘Fragile’

String

Integer

Bool

‘Delivered’ Date

‘Place’ String

Field names

T516

T516

T516

T632

T632

T973 ‘2017/2/10’

‘A17/S6’

‘4’

‘False’

‘2017/1/15’

‘Dublin’

Tenant ValueRecord

E123

E123

E123

E200

E200

E346

Field values

...

Tab1

Tab2 Tab3

Main database table

Extension table showing the
field names for each company
that needs database extensions Value table showing the value of

extension fields for each record

Stock management

M05_SOME6349_01_GE_C05.indd 146 27/09/2020 14:03

 5.4 ■ Multi-tenant and multi-instance systems 147

2. Different customers are likely to need different types of columns. For
example, some customers may wish to have columns whose items are
string types; others may wish to have columns that are integers. You can
get around this by maintaining everything as strings. However, this means
that either you or your customer has to provide conversion software to
create items of the correct type.

An alternative approach to database extensibility is to add any number of
additional fields and to define the names, types, and values of these fields. The
names and types of these values are held in a separate table, accessed using
the tenant identifier. Unfortunately, using tables in this way adds complex-
ity to the database management software. Extra tables must be managed and
information from them integrated into the database.

Figure 5.13 illustrates a situation where the extension column in the data-
base includes an identifier for the added field values. The names and types of
these fields are held in a separate table. They are linked to the values using a
tenant identifier. Table Tab1 is the main database table that maintains infor-
mation about the stock of different items. In this example, there are three
tenants: T516, T632, and T973.

Tab1 has a single extension field (Ext1) that links to a separate table, Tab3.
Each linked row in T1 has one or more rows in Tab3, where the number
of rows represents the number of extension fields. For example, row 1 in
Tab1 has three extension fields. The values of these fields are provided in
Table Tab3 and the field names in Table Tab2. Therefore, the extension fields
for T516/Item 100 are ‘Location’, ‘Weight’, and ‘Fragile’. Their values are
‘A17/S6’, ‘4’, and ‘False’. The extension fields for T634/Item 100 are ‘Deliv-
ered’ and ‘Place’, and their values are ‘2017/1/15’ and ‘Dublin’.

Corporate users may also want to define their own validation rules and
access permissions for their own database. You can implement this using a
customer profile that stores this information but, again, it adds complexity to
your software.

The major concern of corporate customers with multi-tenant databases is
security. As information from all customers is stored in the same database,
a software bug or an attack could lead to the data of some or all customers
being exposed to others. This means that you have to implement stringent
security precautions in any multi-tenant system. I don’t cover security issues
in detail, but I briefly mention two important issues: multilevel access control
and encryption.

Multilevel access control means that access to data must be controlled
at both the organizational level and the individual level. You need to have

M05_SOME6349_01_GE_C05.indd 147 27/09/2020 14:03

148 Chapter 5 ■ Cloud-Based Software

organizational level access control to ensure that any database operations act
on only that organization’s data. So, the first stage is to execute the operation
on the database, selecting the items that are tagged with the organization’s
identifier. Individual users accessing the data should also have their own access
permissions. Therefore, you must make a further selection from the database
to present only those data items that an identified user is allowed to access.

Encryption of data in a multi-tenant database reassures corporate users that
their data cannot be viewed by people from other companies if some kind of
system failure occurs. Encryption, as I discuss in Chapter 7, is the process
of applying a function to data to obscure its value. The encrypted data are
stored and decrypted only when accessed with the appropriate key. However,
encryption and decryption are computationally intensive operations and so
slow down database operation. Consequently, multi-tenant databases that use
encryption usually encrypt only sensitive data.

5.4.2 Multi-instance systems

Multi-instance systems are SaaS systems where each customer has its own
system that is adapted to its needs, including its own database and security
controls. Multi-instance, cloud-based systems are conceptually simpler than
multi-tenant systems and avoid security concerns such as data leakage from
one organization to another.

There are two types of multi-instance system:

1. VM-based multi-instance systems In these systems, the software instance and
database for each customer run in its own virtual machine. This may appear
to be an expensive option, but it makes sense when your product is aimed
at corporate customers who require 24/7 access to their software and data.
All users from the same customer may access the shared system database.

2. Container-based multi-instance systems In these systems, each user has
an isolated version of the software and database running in a set of con-
tainers. Generally, the software uses a microservices architecture, with
each service running in a container and managing its own database. This
approach is suited to products in which users mostly work independently,
with relatively little data sharing. Therefore, it is most suited for prod-
ucts that serve individuals rather than business customers or for business
products that are not data intensive.

M05_SOME6349_01_GE_C05.indd 148 27/09/2020 14:03

 5.4 ■ Multi-tenant and multi-instance systems 149

It is possible to run containers on a virtual machine, so it is also possible to
create hybrid systems where a business could have its own VM-based system and
then run containers on top of this for individual users. As container technology
develops, I suspect this type of system will become increasingly common.

The advantages and disadvantages of using multi-instance databases are
shown in Table 5.7.

Early vendors of SaaS, such as Salesforce.com, developed their systems as
multi-tenant systems because this was the most cost-effective way to provide
a responsive system for users. The shared database could run on powerful
servers, with all data being available as soon as a user logged on to the system.
The alternative at that time was multi-instance VM-based systems, and these
were significantly more expensive.

However, container-based multi-instance systems are not necessarily sig-
nificantly more expensive to run than multi-tenant systems. There is no need

Advantages Disadvantages

Flexibility
Each instance of the software can be
tailored and adapted to a customer’s
needs. Customers may use completely
different database schemas and it is
straightforward to transfer data from
a customer database to the product
database.

Cost
It is more expensive to use multi-instance
systems because of the costs of renting
many VMs in the cloud and the costs of
managing multiple systems. Because of
the slow startup time, VMs may have to be
rented and kept running continuously, even
if there is very little demand for the service.

Security
Each customer has its own database
so there is no possibility of data
leakage from one customer to another.

Update management
Many instances have to be updated so updates
are more complex, especially if instances have
been tailored to specific customer needs.

Scalability
Instances of the system can be scaled
according to the needs of individual
customers. For example, some
customers may require more powerful
servers than others.

Resilience
If a software failure occurs, this will
probably affect only a single customer.
Other customers can continue working
as normal.

Table 5.7 Advantages and disadvantages of multi-instance databases

M05_SOME6349_01_GE_C05.indd 149 27/09/2020 14:03

http://Salesforce.com

150 Chapter 5 ■ Cloud-Based Software

to have VMs constantly available, as containers can be started quickly in
response to user demand. As I discuss in Chapter 6 though, container-based
databases are not suitable for transaction-based applications in which the data-
base must be consistent at all times.

5.5 Cloud software architecture

As part of the architectural design process for your software you should decide
on the most important software attributes, the delivery platform, and the tech-
nology used. If you decide to use the cloud as your delivery platform, you
have to make a number of cloud-specific architectural decisions. I show these
as questions in Figure 5.14.

Choosing the most appropriate cloud platform for development and deliv-
ery of your application is important. As I show in Figure 5.14, the answers to
questions on database organization, scalability and resilience, and software
structure are factors in that decision.

5.5.1 Database organization

There are three possible ways of providing a customer database in a cloud-
based system:

1. As a multi-tenant system, shared by all customers for your product. This
may be hosted in the cloud using large, powerful servers.

Figure 5.14 Architectural decisions for cloud software engineering

Should the software
use a multi-tenant
or multi-instance

database?

Software structure

Cloud platform

Scalability and resilienceDatabase organization

What are the
software scalability

and resilience
requirements?

Should the software
structure be mono-

lithic or service
oriented?

What cloud platform
should be used for
development and

delivery?

M05_SOME6349_01_GE_C05.indd 150 27/09/2020 14:03

 5.5 ■ Cloud software architecture 151

2. As a multi-instance system, with each customer database running on its
own virtual machine.

3. As a multi-instance system, with each database running in its own con-
tainer. The customer database may be distributed over several containers.

Deciding which approach to choose is a critical architectural decision. In
Table 5.8 I show some of the questions you have to ask when making this
decision.

As I have discussed, different types of customers have different expecta-
tions about software products. If you are targeting consumers or small busi-
nesses, they do not expect to have branding and personalization, use of a local
authentication system, or varying individual permissions. This means you can
use a multi-tenant database with a single schema.

Large companies are more likely to want a database that has been adapted
to their needs. This is possible, to some extent, with a multi-tenant system, as

Factor Key questions

Target customers Do customers require different database schemas
and database personalization? Do customers have
security concerns about database sharing? If so, use
a multi-instance database.

Transaction requirements Is it critical that your products support ACID
transactions where the data are guaranteed to be
consistent at all times? If so, use a multi-tenant
database or a VM-based multi-instance database.

Database size and connectivity How large is the typical database used by customers?
How many relationships are there between database
items? A multi-tenant model is usually best for
very large databases, as you can focus effort on
optimizing performance.

Database interoperability Will customers wish to transfer information from
existing databases? What are the differences in
schemas between these and a possible multi-tenant
database? What software support will they expect
to do the data transfer? If customers have many
different schemas, a multi-instance database should
be used.

System structure Are you using a service-oriented architecture for
your system? Can customer databases be split into
a set of individual service databases? If so, use
containerized, multi-instance databases.

Table 5.8 Questions to ask when choosing a database organization

M05_SOME6349_01_GE_C05.indd 151 27/09/2020 14:03

152 Chapter 5 ■ Cloud-Based Software

I discussed in Section 5.4. However, it is easier to provide a tailored product
if you use a multi-instance database.

If your product is in an area such as finance, where the database has to
be consistent at all times, you need a transaction-based system. This means
you should use either a multi-tenant database or a database per customer run-
ning on a virtual machine. All users from each customer share the VM-based
database.

If your customers need a single large relational database that has many
linked tables, then a multi-tenant approach is usually the best design choice.
However, if your database can be limited in size and does not have many con-
nected tables, it may be possible to split the database into smaller independent
databases. Each of these databases can then be implemented as a separate
instance running in its own container.

If you are targeting business customers, they may want to transfer informa-
tion between their local databases and your cloud-based database while they
are using your product. As these customers will not all be using the same data-
base technology and schemas, it is much easier to use a separate database for
each customer. You can then replicate their data organization in the customer
instance. In a multi-tenant system, the time required to adapt the data to the
multi-tenant schema slows down the system’s response.

If you are building your system as a service-oriented system, your services
should each have its own independent database. You should use a multi-
instance database in this situation. You need to design your database as a
separate distributed system. This, of course, adds complexity and may be
a factor in deciding whether to use a service-oriented or an object-oriented
approach to design.

5.5.2 Scalability and resilience

The scalability of a system reflects its ability to adapt automatically to changes
in the load on that system. The resilience of a system reflects its ability to
continue to deliver critical services in the event of system failure or malicious
system use.

You achieve scalability in a system by making it possible to add new virtual
servers (scaling out) or increase the power of a system server (scaling up) in
response to increasing load. In cloud-based systems, scaling out rather than
scaling up is the normal approach used. This means your software has to be
organized so that individual software components can be replicated and run
in parallel. Load-balancing hardware or software is used to direct requests to

M05_SOME6349_01_GE_C05.indd 152 27/09/2020 14:03

 5.5 ■ Cloud software architecture 153

different instances of these components. If you develop your software using
the cloud provider’s support for PaaS, then this can automatically scale your
software as demand increases.

To achieve resilience, you need to be able to restart your software quickly
after a hardware or software failure. Figure 5.15 shows how this can be
achieved.

Several variants to the system organization shown in Figure 5.15 all use
the same fundamental approach:

1. Replicas of the software and data are maintained in different locations.

2. Database updates are mirrored so that the standby database is a working
copy of the operational database.

3. A system monitor continually checks the system status. It can switch to
the standby system automatically if the operational system fails.

To protect against hardware failure or failure of the cloud management soft-
ware, you need to deploy your main system and backup system in different
physical locations. You should use virtual servers that are not hosted on the
same physical computer. Ideally, these servers should be located in different
data centers. If a physical server fails or if there is a wider data center failure,
then operation can be switched automatically to the software copies elsewhere.

If software copies are run in parallel, switching may be completely trans-
parent with no effects on users. Figure 5.15 shows a “hot standby” system,
where data in different locations are synced so that there is only a minimal
delay in bringing up the new system. A cheaper alternative is to use a “cool

Figure 5.15 Using a standby system to provide resilience

Location A Location B

System monitor

Active system Standby system

Database 1 Database 2

Database
mirror

M05_SOME6349_01_GE_C05.indd 153 27/09/2020 14:03

154 Chapter 5 ■ Cloud-Based Software

standby” approach. In a cool standby system, the data are restored from a
backup and the transactions are replayed to update the backup to the system
state immediately before failure. If you use a cool standby approach, your
system will be unavailable until the backup restore is complete.

System monitoring can range from regular checking that your system is
up and delivering service to more comprehensive monitoring of the load and
the response times of your software. Data from the monitor may be used to
decide if you need to scale your system up or down. System monitors can
also provide early warnings of problems with your software or server. They
may be able to detect external attacks and report these to the cloud provider.

5.5.3 Software structure

An object-oriented approach to software engineering has been the dominant mode
of development since the mid-1990s. This approach is suitable for the develop-
ment of client–server systems built around a shared database. The system itself is,
logically, a monolithic system with distribution across multiple servers running
large software components. The traditional multi-tier client–server architecture
that I discussed in Chapter 4 is based on this distributed system model. All the
business logic and processing are implemented in a single system.

The alternative to a monolithic approach to software organization is a
service-oriented approach, where the system is decomposed into fine-grain,
stateless services. Because it is stateless, each service is independent and
can be replicated, distributed, and migrated from one server to another. The
service-oriented approach is particularly suitable for cloud-based software
with services deployed in containers.

I recommend that you normally use a monolithic approach to build your
prototype and perhaps the first release of your software product. Development
frameworks usually include support for implementing systems based on a model-
view-controller model. Consequently, monolithic MVC systems can be built
fairly quickly. When you are experimenting with a system, it is usually easier
to do so using a single program as you don’t have to identify services, manage a
large number of distributed services, support multiple databases, and so on.

Software products are often delivered on mobile devices as well as browser-
based systems. Different parts may have to be updated at different times, and
you may need to respond quickly to infrastructure change, such as a mobile OS
upgrade. Sometimes you have to scale parts of a system to cope with increasing
load even though other parts are unaffected. In those circumstances, I recom-
mend that you use a service-oriented architecture based on microservices.

M05_SOME6349_01_GE_C05.indd 154 27/09/2020 14:03

 5.5 ■ Cloud software architecture 155

5.5.4 Cloud platform

Many different cloud platforms are now available. These may be general-
purpose clouds such as Amazon Web Services or lesser-known platforms
oriented around a specific application, such as the SAP Cloud Platform. There
are also smaller national providers that provide more limited services but may
be more willing to adapt their services to the needs of different customers.
There is no “best” platform; you should choose a cloud provider based on your
background and experience, the type of product you are developing, and the
expectations of your customers.

You need to consider both technical issues and business issues when choos-
ing a cloud platform for your product. Figure 5.16 shows the main technical
issues in cloud platform choice.

In addition to their basic IaaS services, cloud vendors usually provide other
services such as database services, “big data” services, and so on. Using these
services can reduce your development costs and time to market, so you should
choose a provider whose services best support your application area. You
may also need to consider software compatibility. For example, if you have
developed business products for a .NET environment, they can usually be
transferred fairly easily to the Microsoft Azure cloud.

Some systems have a predictable usage pattern, and there is no need to design
for unexpected spikes in usage. If it is likely that your system will experience
large spikes in demand, however, you should choose a provider that offers PaaS
libraries that make it easier to write elastic software. As I have discussed, resil-
ience relies on replication, so you need to use a provider that has data centers in
different locations and that supports replication across these locations.

Figure 5.16 Technical issues in cloud platform choice

Expected load and
load predictability

Resilience

Supported cloud
services

Privacy and
data protection

Cloud platform
choice

M05_SOME6349_01_GE_C05.indd 155 27/09/2020 14:03

156 Chapter 5 ■ Cloud-Based Software

Privacy and data protection are technical and business issues. Some coun-
tries and areas, such as the European Union, have strict requirements on data
protection and on where data are stored. From a technical perspective, if you
have customers in different countries, you need to use a cloud provider that has
international data centers and that can provide guarantees on storage locations.

The business issues you have to consider when choosing a cloud provider
are shown in Figure 5.17.

Cost is obviously a critical factor in choosing a cloud platform, particularly
for small product companies. The costs of cloud services from different pro-
viders vary quite significantly, particularly for software with varying usage
patterns. However, it is difficult to work out the real costs and the trade-off
between direct and indirect costs such as cloud management. Although it may
be tempting to choose the provider that appears to offer the lowest costs, you
must always ask yourself why that provider is cheaper and what compromises
have been made to provide a lower-price service.

If your development team have experience with a particular cloud platform,
it makes sense to use that platform if possible. Your team will not have to
spend time learning about a new system and so the overall product develop-
ment time will be reduced.

If you are offering business products, you need to think carefully about
the expectations of your customers. There may be commercial advantages in
allowing your software to interoperate with other software used by your cus-
tomers. Many businesses run their software on platforms such as Salesforce
and Microsoft Azure, so you should consider these as a deployment platform
for your product. Some companies prefer to deal with trusted providers, such
as IBM, so prefer software that will run on that provider’s cloud. Of course,

Figure 5.17 Business issues in cloud platform choice

Target
customers

Cost

Portability and
cloud migration

Business
issues

Service-level
agreements

Developer
experience

M05_SOME6349_01_GE_C05.indd 156 27/09/2020 14:03

 Key points 157

if you are targeting a specific market, such as users of SAP software, you
should choose the cloud platform used by that software.

Service-level agreements (SLAs) define the performance and availability of a
service that’s delivered to customers. Your customers will expect a certain level
of service, and to deliver this, you need a comparable service level from your
cloud provider. Cloud SLAs set out the service that a cloud provider guarantees
to provide and the penalties if it fails to do so. If you have specific requirements
and you are a large customer, you should choose a provider that will negotiate
SLAs. Large providers such as Amazon and Google simply offer most customers
an SLA on a “take it or leave it” basis with no room for negotiation.

Portability and cloud migration are both technical and business issues. In
choosing a provider, you need to think about the possibility that you may wish
to move your software to another provider in future. You may be unhappy
with the service provided, or you may need services that are not available
from your current provider. Containers have simplified the problems of cloud
migration, as they are stand-alone entities supported by all cloud providers.
You can easily restart your software in a container from a different provider.

If you use cloud provider platform services in your software implementa-
tion, however, these have to be reimplemented on a different system. Not all
services from Amazon (say) are available on Google, and vice versa. There-
fore, this software has to be rewritten if it is migrated.

K E Y P O I N T S

■■ The cloud is made up of a large number of virtual servers that you can rent for your own use.
You and your customers access these servers remotely over the Internet and pay for the
amount of server time used.

■■ Virtualization is a technology that allows multiple server instances to be run on the same
physical computer. This means you can create isolated instances of your software for
deployment on the cloud.

■■ Virtual machines are physical server replicas on which you run your own operating system,
technology stack, and applications.

■■ Containers are a lightweight virtualization technology that allow rapid replication and
deployment of virtual servers. All containers run the same operating system. Docker is
currently the most widely used container technology.

■■ A fundamental feature of the cloud is that “everything” can be delivered as a service and accessed
over the Internet. A service is rented rather than owned and is shared with other users.

M05_SOME6349_01_GE_C05.indd 157 27/09/2020 14:03

158 Chapter 5 ■ Cloud-Based Software

■■ Infrastructure as a service (IaaS) means that computing, storage, and other services are
available in the cloud. There is no need to run your own physical servers.

■■ Platform as a service (PaaS) means using services provided by a cloud platform vendor to
make it possible to auto-scale your software in response to demand.

■■ Software as a service (SaaS) means that application software is delivered as a service to
users. This has important benefits for users, such as lower capital costs, and for software
vendors, such as simpler deployment of new software releases.

■■ Multi-tenant systems are SaaS systems where all users share the same database, which may
be adapted at run time to their individual needs. Multi-instance systems are SaaS applications
where each user has their own separate database.

■■ The key architectural issues for cloud-based software are the cloud platform to be used,
whether to use a multi-tenant or multi-instance database, scalability and resilience
requirements, and whether to use objects or services as the basic components in the
system.

R E C O M M E N D E D R E A D I N G

“SaaS vs. PaaS vs. IaaS—An Ultimate Guide on When to Use What” This succinct introduction to
everything as a service discusses not only what the terms mean but also when it is appropriate to
use these services. (S. Patel, 2015)

https://www.linkedin.com/pulse/saas-vs-paas-iaas-ultimate-guide-when-use-what-sonia-patel

Cloud vendor tutorials

These are links to the tutorials provided by the major public cloud vendors (Amazon, Google, and
Microsoft) that explain how to set up and get started with their services.
https://aws.amazon.com/getting-started/
https://cloud.google.com/docs/tutorials#getting_started
https://docs.microsoft.com/en-us/azure/

“A Beginner-Friendly Introduction to Containers, VMs and Docker”

This easy-to-read article explains both virtual machine and container technology as well as
Docker, which is the most widely used container system. (P. Kasireddy, 2016)
https://medium.freecodecamp.com/a-beginner-friendly-introduction-to-containers-vms-and-
docker-79a9e3e119b

“The Docker Ecosystem: Networking and Communications”

Most articles on container communications dive into technicalities quickly without presenting a
broad picture of the issues. This article is an exception, and I recommend reading it before any of
the more detailed technical tutorials. (J. Ellingwood, 2015)

M05_SOME6349_01_GE_C05.indd 158 27/09/2020 14:03

https://www.linkedin.com/pulse/saas-vs-paas-iaas-ultimate-guide-when-use-what-sonia-patel
https://aws.amazon.com/getting-started/
https://cloud.google.com/docs/tutorials#getting_started
https://docs.microsoft.com/en-us/azure/
https://medium.freecodecamp.com/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b
https://medium.freecodecamp.com/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b

 Exercises 159

https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-networking-and-
communication

“Multi tenancy vs. Multi instance in CCaaS/UCaaS Clouds”

Most articles on this topic argue for one solution or another, but this is a balanced article that
looks at the advantages and disadvantages of each approach. (A. Gangwani, 2014)
http://www.contactcenterarchitects.com/wp-content/uploads/2014/12/Who-Leads-Whom-
CCaaS_UCaaS_Whitepaper3.76-by-Ankush-Gangwani.pdf

P R E S E N T A T I O N S , V I D E O S , A N D L I N K S

https://iansommerville.com/engineering-software-products/cloud-based-software

E X E R C I S E S

 5.1. Why should companies that are developing software products use cloud servers to support
their development process?

 5.2. Explain the fundamental difference between virtualization using a VM and virtualization
using a container.

 5.3. Explain why it is simple and fast to deploy a replica of a container on a new server.

 5.4. Explain what is meant by IaaS and PaaS. Explain why the distinction between these
categories of services is becoming increasingly blurred and why they may be merged in the
near future.

 5.5. What are the benefits to software product vendors of delivering software as a service? In
what situations might you decide not to deliver software in this way?

 5.6. Using an example, explain why EU data protection rules can cause difficulties for
companies that offer software as a service.

 5.7. What is the fundamental difference between a multi-tenant SaaS system and a multi-
instance SaaS system?

 5.8. What are the key issues that have to be considered when deciding whether to implement a
multi-tenant or a multi-instance database when software is delivered as a service?

 5.9. Why isn’t cost the most important factor to consider when choosing a cloud platform for
development and software delivery?

 5.10. What do you need to do to deliver a resilient cloud-based system that offers your software
as a service?

M05_SOME6349_01_GE_C05.indd 159 27/09/2020 14:03

https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-networking-and-communication
http://www.contactcenterarchitects.com/wp-content/uploads/2014/12/Who-Leads-Whom-CCaaS_UCaaS_Whitepaper3.76-by-Ankush-Gangwani.pdf
http://www.contactcenterarchitects.com/wp-content/uploads/2014/12/Who-Leads-Whom-CCaaS_UCaaS_Whitepaper3.76-by-Ankush-Gangwani.pdf
https://iansommerville.com/engineering-software-products/cloud-based-software
https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-networking-and-communication

Microservices Architecture

One of the most important decisions a software architect has to make is how
to decompose a system into components. Component decomposition is critical
because the components can then be developed in parallel by different people
or teams. They can be reused and replaced if their underlying technology
changes, and they can be distributed across multiple computers.

To take advantage of the benefits of cloud-based software—scalability,
reliability, and elasticity—you need to use components that can be easily
replicated, run in parallel, and moved between virtual servers. This is difficult
with components, such as objects, that maintain local state because you need
to find a way of maintaining state consistency across components. Therefore,
it is best to use stateless software services that maintain persistent information
in a local database.

A software service is a software component that can be accessed from
remote computers over the Internet. Given an input, a service produces a
corresponding output, without side effects. The service is accessed through
its published interface and all details of the service implementation are hid-
den. The manager of a service is called the service provider, and the user of
a service is called a service requestor.

Services do not maintain any internal state. State information is either
stored in a database or maintained by the service requestor. When a service
request is made, the state information may be included as part of the request
and the updated state information is returned as part of the service result.
As there is no local state, services can be dynamically reallocated from one
virtual server to another. They can be replicated to reflect increases in the
number of service requests made, making it simpler to create applications that
can scale depending on load.

6

M06_SOME6349_01_GE_C06.indd 160 30/09/2020 15:50

 Chapter 6 ■ Microservices Architecture 161

Software services are not a new idea and the notion of “service-oriented
architecture” was developed in the late 1990s. This introduced the principle
that services should be independent and stand alone, they should have defined
and publicly accessible interfaces, and services in the same system can be
implemented using different technologies.

To operate effectively, services must use a standard protocol for commu-
nication and a standard format for interface description. After various experi-
ments in the 1990s with service-oriented computing, the idea of Web Services
emerged in the early 2000s. These were based on XML-based protocols and
standards, such as SOAP for service interaction and WSDL for interface
description. They were supplemented by a range of additional XML-based
standards covering service orchestration (how services are combined to create
new functionality), reliable messaging, quality of service, and so on.

Web Services standards and protocols involve services exchanging large
and complex XML texts. It takes a significant amount of time to analyze the
XML messages and extract the encoded data, which slows down systems built
using these web services. Even small, single-function web services have a
significant message management overhead.

Most software services are simple, however; they don’t need the generality
that’s inherent in the design of web service protocols. Consequently, modern
 service-oriented systems use simpler, “lighter weight” service-interaction protocols
that have lower overheads and consequently faster execution. These have simple
interfaces and usually use a more efficient format for encoding message data.

As service-oriented ideas were being developed, companies such as Ama-
zon were rethinking the concept of a service. Web services were generally
thought of as implementations of traditional software components that could
be distributed over a network. So, there might be business services, user inter-
face (UI) services, logging services, and so on. These services usually shared
a database and provided an API that was used by the system’s user interface
module. In practice, it was not easy to scale or move individual services with-
out affecting other parts of the system.

Amazon’s approach was to rethink what a service should be. They con-
cluded that a service should be related to a single business function. Instead of
relying on a shared database and other services in the system, services should
be completely independent, with their own database. They should also man-
age their own user interface. Replacing or replicating a service should there-
fore be possible without having to change any other services in the system.

This type of service has become known as a “microservice.” Microservices
are small-scale, stateless services that have a single responsibility. Software
products that use microservices are said to have a microservices architecture.

M06_SOME6349_01_GE_C06.indd 161 30/09/2020 15:50

162 Chapter 6 ■ Microservices Architecture

If you need to create cloud-based software products that are adaptable, scal-
able, and resilient, then I recommend that you use a microservices architecture.

A microservices architecture is based on services that are fine-grain com-
ponents with a single responsibility. For example, a coarse-grain authenti-
cation component or service might manage user names, check passwords,
handle forgotten passwords, and send texts for two-factor authentication. In a
microservice-based system, you may have individual microservices for each
of these, such as get-login-name, check-password, and so on.

Before going on to discuss microservices in more detail, I’ll introduce
microservices using a short example. Consider a system that uses an authen-
tication module that provides the following features:

■■ user registration, where users provide information about their identity,
security information, mobile (cell) phone number, and email address;

■■ authentication using user ID (UID)/password;

■■ two-factor authentication using code sent to mobile phone;

■■ user information management—for example, ability to change password
or mobile phone number;

■■ password reset.

In principle, each of these features can be implemented as a separate service
that uses a central shared database to hold authentication information. A user
interface service can then manage all aspects of user communication.

In a microservices architecture, however, these features are too large to
be microservices. To identify the microservices that might be used in the
authentication system, you need to break down the coarse-grain features into
more detailed functions. Figure 6.1 shows what these functions might be for
user registration and UID/password authentication.

At this stage, you might think you have identified the microservices that
you need. Each of the functions shown in Figure 6.1 could be implemented
as a single microservice. However, remember that each microservice has to
manage its own data. If you have very specific services, data often have to
be replicated across several services. There are various ways of keeping data
consistent, but they all potentially slow down the system. I explain how rep-
licate data can be reconciled later in the chapter.

Alternatively, you can look at the data used for authentication and identify
a microservice for each logical data item that has to be managed. This mini-
mizes the amount of replicate data management that is required. Therefore,

M06_SOME6349_01_GE_C06.indd 162 30/09/2020 15:50

 Chapter 6 ■ Microservices Architecture 163

you might have a UID management service, a password management service,
and so on. The operations supported by these services allow information to be
created, read, and modified.

As I discuss later, these operations map onto the operations available for
RESTful services. Figure 6.2 shows the microservices that could be used to
implement user authentication. Other services, of course, would be required for
registration. The convention that I use in figures in this chapter is that round-
edged rectangles represent microservices and ellipses represent service data.

Figure 6.1 Functional breakdown of authentication features

Set up new login ID

Set up new password

Set up password recovery information

Set up two-factor authentication

Confirm registration

User registration

Authenticate using UID/password

Get login ID

Get password

Check credentials

Confirm authentication

Figure 6.2 Authentication microservices

UID
management

Password
management

User info
management

UID data

Password
data

User data

Authentication

M06_SOME6349_01_GE_C06.indd 163 30/09/2020 15:50

164 Chapter 6 ■ Microservices Architecture

6.1 Microservices

Microservices are small-scale services that may be combined to create applica-
tions. They should be independent, so that the service interface is not affected
by changes to other services. It should be possible to modify the service and
re-deploy it without changing or stopping other services in the system. Table 6.1
summarizes these essential characteristics of microservices.

Microservices communicate by exchanging messages. A message that is
sent between services includes some administrative information, a service
request, and the data required to deliver the requested service. For example,
an authentication service may send a message to a login service that includes
the name input by the user. Services return a response to service request
messages. This response includes data representing the reply to the service
request. The reply from the login service might be a token associated with a
valid user name or might be an error saying that there is no registered user.

Your aim in designing a microservice should be to create a service that
has high cohesion and low coupling. Cohesion and coupling are ideas that
were developed in the 1970s to reflect the interdependence of components in
a software system. Briefly:

■■ Coupling is a measure of the number of relationships that one component
has with other components in the system. Low coupling means that com-
ponents do not have many relationships with other components.

Characteristic Explanation

Self-contained Microservices do not have external dependencies. They
manage their own data and implement their own user
interface.

Lightweight Microservices communicate using lightweight protocols,
so that service communication overheads are low.

Implementation
independent

Microservices may be implemented using different
programming languages and may use different
technologies (e.g., different types of database) in their
implementation.

Independently
deployable

Each microservice runs in its own process and is
independently deployable, using automated systems.

Business-oriented Microservices should implement business capabilities and
needs, rather than simply provide a technical service.

Table 6.1 Characteristics of microservices

M06_SOME6349_01_GE_C06.indd 164 30/09/2020 15:50

 6.1 ■ Microservices 165

■■ Cohesion is a measure of the number of relationships that parts of a compo-
nent have with each other. High cohesion means that all of the component
parts that are needed to deliver the component’s functionality are included
in the component.

Low coupling is important in microservices because it leads to independent
services. So long as you maintain its interface, you can update a service with-
out having to change other services in the system. High cohesion is important
because it means that the service does not have to call lots of other services
during execution. Calling other services involves communications overhead,
which can slow down a system.

The aim of developing highly cohesive services has led to a fundamental
principle that underlies microservice design: the “single responsibility prin-
ciple.” Each element in a system should do one thing only and it should do
it well. However, the problem with this is that “one thing only” is difficult to
define in a way that is applicable to all services.

If you take the single responsibility principle literally, you would imple-
ment separate services for creating and changing a password and for checking
that a password is correct. However, these simple services would all have to
use a shared password database. This is undesirable because it increases the
coupling between these services. Responsibility, therefore, should not always
mean a single, functional activity. In this case, I would interpret a single
responsibility as the responsibility to maintain stored passwords, and I would
design a single microservice to do this.

The term “microservices” implies that services are small-scale components,
so developers often ask “How big should a microservice be?” Unfortunately,
there is no easy way to answer this question. I don’t think it is sensible to use a
measure such as lines of code, especially as services can be written in different
programming languages. Rather, I think the “rule of twos” is perhaps the most
useful when you are thinking about the size of microservices:

■■ It should be possible for a microservice to be developed, tested, and
deployed by a service development team in two weeks or less.

■■ The team size should be such that the whole team can be fed by no more
than two large pizzas (Amazon’s guideline). This places an upper limit on
the team size of eight to ten people (depending on how hungry they are).

You may think that, because microservices have to do only one thing,
there really isn’t a lot of code involved. Aren’t they just like a function or a

M06_SOME6349_01_GE_C06.indd 165 30/09/2020 15:50

166 Chapter 6 ■ Microservices Architecture

class in a program? Why might a development team of eight to ten people be
needed? In essence, this many people may be needed because the team is not
just responsible for implementing the service functionality. They must also
develop all the code that is necessary to ensure that a microservice is com-
pletely independent, such as UI code, security code, and so on.

Furthermore, members of the service team are usually responsible for test-
ing services, maintaining the team’s software development environment, and
supporting the service after it has been deployed. Testing is not simply the unit
testing of the service functionality but also the testing of its interactions with
other services in the overall system. The testing process is usually automated,
and it requires a lot of time and effort to program comprehensive service tests.

Although microservices should focus on a single responsibility, this does
not mean they are like functions that do only one thing. Responsibility is a
broader concept than functionality, and the service development team has to
implement all the individual functions that implement the service’s responsi-
bility. To illustrate this, Figure 6.3 shows the range of functionality that might
be included in a password management microservice.

In addition to this functionality, the independence of microservices means
that each service has to include support code that may be shared in a mono-
lithic system. Figure 6.4 shows support code that is needed in all microser-
vices. For many services, you need to implement more support code than the
code that delivers the service functionality.

Message management code in a microservice is responsible for processing
incoming and outgoing messages. Incoming messages have to be checked for
validity, and the data extracted from the message format are used. Outgoing
messages have to be packed into the correct format for service communication.

Figure 6.3 Password management functionality

User functions

Create password

Change password

Check password

Recover password

Supporting functions

Check password validity

Delete password

Back up password database

Recover password database

Check database integrity

Repair password database

M06_SOME6349_01_GE_C06.indd 166 30/09/2020 15:50

 6.2 ■ Microservices architecture 167

Failure management code in a microservice has two concerns. First, it has
to cope with circumstances where the microservice cannot properly complete a
requested operation. Second, if external interactions are required, such as a call
to another service, it has to handle the situation where that interaction does not
succeed because the external service returns an error or does not reply.

Data consistency management is needed when the data used in a microser-
vice are also used by other services. In those cases, there needs to be a way of
communicating data updates between services and ensuring that the changes
made in one service are reflected in all services that use the data. I explain
consistency management and failure management later in this chapter.

For complete independence, each microservice should maintain its own
user interface. Microservice support teams must agree on conventions for this
interface and, within these conventions, each microservice may offer a user
interface that is tailored to the microservice’s responsibility.

6.2 Microservices architecture

A microservices architecture is not like a layered application architecture
that defines the common set of components used in all applications of a par-
ticular kind. Rather, a microservices architecture is an architectural style—
a tried and tested way of implementing a logical software architecture. For
web-based applications, this architectural style is used to implement logical
client-server architectures, where the server is implemented as a set of inter-
acting microservices.

The microservices architectural style aims to address two fundamental
problems with the multi-tier software architecture for distributed systems,
which I introduced in Chapter 4:

Figure 6.4 Microservice support code

Microservice X

Service functionality

Message
management

UI
implementation

Failure
management

Data consistency
management

M06_SOME6349_01_GE_C06.indd 167 30/09/2020 15:50

168 Chapter 6 ■ Microservices Architecture

1. When a monolithic architecture is used, the whole system has to be
rebuilt, retested, and re-deployed when any change is made. This can be
a slow process, as changes to one part of the system can adversely affect
other components. Frequent application updates are therefore impossible.

2. As the demand on the system increases, the whole system has to be scaled,
even if the demand is localized to a small number of system components
that implement the most popular system functions. Larger servers must be
used, and this significantly increases the costs of renting cloud servers to
run the software. Depending on how virtualization is managed, starting up
a larger server can take several minutes, with the system service degraded
until the new server is up and running.

Microservices are self-contained and run in separate processes. In cloud-
based systems, each microservice may be deployed in its own container. This
means a microservice can be stopped and restarted without affecting other
parts of the system. If the demand on a service increases, service replicas can
be quickly created and deployed. These do not require a more powerful server,
so scaling out is typically much cheaper than scaling up.

Let’s start with an example to see what a system that uses a microservices
architecture might look like. Table 6.2 is a brief description of a photo-printing
system.

In a monolithic client–server system, the photo-printing functionality
would be implemented in the business logic tier, with all information held in
a common database. By contrast, a microservices architecture uses separate
services for each area of functionality. Figure 6.5 is a diagram of a possible
high-level system architecture for a photo-printing system. Some of the ser-
vices shown might be decomposed into more specialized microservices, but
I do not show this here.

The API gateway shown in Figure 6.5 is an important component that insu-
lates the user app from the system’s microservices. The gateway is a single

Imagine that you are developing a photo-printing service for mobile devices. Users can
upload photos to your server from their phone or specify photos from their Instagram
account that they would like to be printed. Prints can be made at different sizes and on
different media.

Users can choose print size and print medium. For example, they may decide to print a
picture onto a mug or a T-shirt. The prints or other media are prepared and then posted
to their home. They pay for prints either using a payment service such as Android or
Apple Pay or by registering a credit card with the printing service provider.

Table 6.2 A photo-printing system for mobile devices

M06_SOME6349_01_GE_C06.indd 168 30/09/2020 15:50

 6.2 ■ Microservices architecture 169

point of contact and translates service requests from the app into calls to the
microservices used in the system. This means that the app does not need to
know what service communication protocol is being used. Using a gateway
also means it is possible to change the service decomposition by splitting or
combining services without affecting the client app.

6.2.1 Architectural design decisions

In a microservice-based system, the development teams for each service are
autonomous. They make their own decisions about how best to provide the
service. This means the system architect should not make technology deci-
sions for individual services; these are left to the service implementation team.
For practical reasons, however, teams should not use too many different tech-
nologies. There are costs, such as the purchase and maintenance of a develop-
ment environment, in supporting each technology used. It also takes time and
effort for developers to learn about new technologies when they move from
one team to another.

Although individual microservices are independent, they have to coor-
dinate and communicate to provide the overall system service. Therefore,
to design a microservices architecture, you have to consider the key design
issues shown in Figure 6.6.

Figure 6.5 A microservices architecture for a photo-printing system

Mobile
app API gateway

Authentication

SERVICES

Registration

Upload

Payment

Printing

Dispatch

M06_SOME6349_01_GE_C06.indd 169 30/09/2020 15:50

170 Chapter 6 ■ Microservices Architecture

One of the most important jobs for a system architect is to decide how
the overall system should be decomposed into a set of microservices. As
I explained in the introduction, this is not just a matter of making each
system function as a microservice. Too many microservices in a system
mean that there will be many service communications and the time needed
for process communications slows down the system. Too few microser-
vices means that each service must have more functionality. The services
will be larger, with more dependencies, so changing them is likely to be
more difficult.

Unfortunately, there is no simple method you can follow to decompose a sys-
tem into microservices. However, some general design guidelines may be helpful:

1. Balance fine-grain functionality and system performance In single-
function services, changes are typically limited to few services. If each
of your services offers only a single, very specific service, however, it is
inevitable that you will need to have more service communications to
implement user functionality. This slows down a system because each
service has to bundle and unbundle messages sent from other services.

2. Follow the “common closure principle” This means that elements of a
system that are likely to be changed at the same time should be located
within the same service. Most new and changed requirements should
therefore affect only a single service.

Figure 6.6 Key design questions for microservices architecture

What are the microservices that
make up the system?

How should microservices
communicate with each other?

How should the microservices
in the system be coordinated?

How should service failure be
detected, reported, and managed?

How should data be
distributed and shared?

Microservices
architecture

design

M06_SOME6349_01_GE_C06.indd 170 30/09/2020 15:50

 6.2 ■ Microservices architecture 171

3. Associate services with business capabilities A business capability is a
discrete area of business functionality that is the responsibility of an indi-
vidual or a group. For example, the provider of a photo-printing system
will have a group responsible for sending photos to users (dispatch capa-
bility), a set of printing machines (print capability), someone responsible
for finance (payment service), and so on. You should identify the services
that are required to support each business capability.

4. Design services so that they have access to only the data that they need In
situations with an overlap between the data used by different services, you
need to have a mechanism that ensures that data changes in one service
are propagated to other services that use the same data.

One possible starting point for microservice identification is to look at the
data that services have to manage. It usually makes sense to develop microser-
vices around logically coherent data, such as passwords, user identifiers, and
so on. This avoids the problem of having to coordinate the actions of different
services to ensure that shared data are consistent.

Experienced microservice developers argue that the best way to identify the
microservices in a system is to start with a monolithic architecture based on the
traditional multi-tier client–server model that I described in Chapter 4. Once you
have experience of a system and some data about how it is used, it is much easier
to identify the functionality that should be encapsulated in microservices. You
should then refactor your monolithic software into a microservices architecture.

6.2.2 Service communications

Services communicate by exchanging messages. These messages include infor-
mation about the originator of the message as well as the data that are the input
to or output from the request. The messages that are exchanged are structured
to follow a message protocol. This is a definition of what must be included in
each message and how each component of the message can be identified.

When you are designing a microservices architecture, you have to establish
a standard for communications that all microservices should follow. Key deci-
sions that you have to make are:

■■ Should service interaction be synchronous or asynchronous?

■■ Should services communicate directly or via message broker middleware?

■■ What protocol should be used for messages exchanged between services?

M06_SOME6349_01_GE_C06.indd 171 30/09/2020 15:50

172 Chapter 6 ■ Microservices Architecture

Figure 6.7 illustrates the difference between synchronous and asynchro-
nous interaction.

In a synchronous interaction, service A issues a request to service B. Service
A then suspends processing while service B is processing the request. It waits
until service B has returned the required information before continuing execution.

In an asynchronous interaction, service A issues the request that is queued
for processing by service B. Service A then continues processing without
waiting for service B to finish its computations. Sometime later, service
B completes the earlier request from service A and queues the result to be
retrieved by service A. Service A therefore has to check its queue periodically
to see if a result is available.

Synchronous interaction is less complex than asynchronous interaction. Con-
sequently, synchronous programs are easier to write and understand. There will

Figure 6.7 Synchronous and asynchronous microservice interaction

Service A

Calls
Returns

Requests (B)

Synchronous - A waits for B

Asynchronous - A and B execute concurrently

Queue B Queue A

Requests (A)

Service B

Service A

Processing Waiting Processing

Processing Processing

Processing Processing

ProcessingProcessing

Service B

M06_SOME6349_01_GE_C06.indd 172 30/09/2020 15:50

 6.2 ■ Microservices architecture 173

probably be fewer difficult-to-find bugs. On the other hand, asynchronous interac-
tion is often more efficient than synchronous interaction, as services are not idle
while waiting for a response. Services that interact asynchronously are loosely
coupled, so making changes to these services should be easier. If service develop-
ers don’t have much experience in concurrent programming, however, it usually
takes longer to develop a reliable asynchronous system.

I recommend starting with the simplest approach, which is synchronous
interaction. However, you should be prepared to rewrite some services to
interact asynchronously if you find that the performance of the synchronous
system is not good enough.

Direct service communication requires that interacting services know each
other’s addresses. The services interact by sending requests directly to these
addresses. Indirect communication involves naming the service that is required
and sending that request to a message broker (sometimes called a message bus).
The message broker is then responsible for finding the service that can fulfill the
service request. Figure 6.8 shows these communication alternatives.

Direct service communication is usually faster, but it means that the
requesting service must know the URI (uniform resource identifier) of the
requested service. If that URI changes, then the service request will fail.

Indirect communication requires additional software (a message broker)
but services are requested by name rather than a URI. The message broker
finds the address of the requested service and directs the request to it. This
is particularly useful where services exist in several versions. The requesting

Figure 6.8 Direct and indirect service communication

Direct communication - A and B send messages to each other

Indirect communication - A and B communicate through a message broker

Message broker

Service A Service B

Service A Service B

M06_SOME6349_01_GE_C06.indd 173 30/09/2020 15:50

174 Chapter 6 ■ Microservices Architecture

service does not need to know the specific version being used. By default, the
message broker can direct requests to the most recent version.

Message brokers, such as the API gateway shown in Figure 6.5, route a ser-
vice request to the correct service. They may also handle message translation
from one format to another. A service that accesses another service through a
message broker does not need to know details of where that service is located or
its message format. RabbitMQ is an example of a widely used message broker.

Message brokers can support synchronous and asynchronous interactions.
A requesting service simply sends a service request to the message broker and
either waits for a response or continues processing. When the service request
is complete, the message broker takes care of ensuring that the response is in
the right format and informs the original service that it is available.

If you use a message broker, it is easier to modify and replace services
without affecting the clients using these services. However, this flexibility
means that the overall system becomes more complex. Direct service com-
munication is simple and easy to understand. It is usually faster to develop
products using direct service communication.

A message protocol is an agreement between services that sets out how
messages between these services should be structured. Protocols can be
strictly defined, as in the Advanced Message Queuing Protocol (AMQP) that
is supported by RabbitMQ and other message brokers. The protocol definition
sets out what data must be included in a message and how they must be orga-
nized. The message broker rejects messages that do not follow the definition.

However, the most widely used approach to direct service communication
does not have a formal definition. RESTful services follow the REST archi-
tectural style with the message data represented using JSON. The operations
offered by these services can be represented using the verbs supported by the
HTTP Internet Protocol: GET, PUT, POST, and DELETE. The service is
represented as a resource that has its own URI.

Because of the ubiquity of RESTful services, I focus on how you can use
this approach rather than a more complex approach based on message brokers
and AMQP. In Section 6.3, I explain the fundamentals of RESTful services
and show how they can be organized.

6.2.3 Data distribution and sharing

A general rule of microservice development is that each microservice should
manage its own data. In an ideal world, the data managed by each service
would be completely independent. There would be no need to propagate data
changes made in one service to other services.

M06_SOME6349_01_GE_C06.indd 174 30/09/2020 15:50

 6.2 ■ Microservices architecture 175

In the real world, however, complete data independence is impossible.
There will always be overlaps between the data used in different services.
Consequently, as an architect, you need to think carefully about sharing data
and managing data consistency. You need to think about the microservices as
an interacting system rather than as individual units. This means:

1. You should isolate data within each system service with as little data
sharing as possible.

2. If data sharing is unavoidable, you should design microservices so that
most sharing is read-only, with a minimal number of services responsible
for data updates.

3. If services are replicated in your system, you must include a mechanism
that can keep the database copies used by replica services consistent.

Multi-tier client–server systems use a shared database architecture where
all system data are maintained in a shared database. Access to those data is
managed by a database management system (DBMS). The DBMS can ensure
that the data are always consistent and that concurrent data updates do not
interfere with each other.

Failure of services in the system and concurrent updates to shared data have
the potential to cause database inconsistency. Without controls, if services A
and B are updating the same data, the value of that data depends on the timing
of the updates. However, by using ACID transactions, the DBMS serializes
the updates and avoids inconsistency.

An ACID transaction bundles a set of data updates into a single unit so that
either all updates are completed or none of them are. The database is always con-
sistent because, in the event of some kind of failure, there are no partial updates
to the data. You need this for some kinds of system. For example, if you move
money from account A to account B within the same bank, it would be unaccept-
able for account A to be debited without crediting the same amount to account B.

When you use a microservices architecture, this kind of transaction is dif-
ficult to implement efficiently unless you can confine the data involved in the
transaction to a single microservice. However, this almost certainly means that
you have to break the rule of a microservice having a single responsibility.
Consequently, if you are implementing a system, such as a banking system,
where absolute data consistency at all times is a critical requirement, you
should normally use a shared database architecture.

In any distributed system, there is a trade-off between data consistency
and performance. The stricter the requirements for data consistency, the more
computing you have to do to ensure that the data are consistent. Furthermore,

M06_SOME6349_01_GE_C06.indd 175 30/09/2020 15:50

176 Chapter 6 ■ Microservices Architecture

you may need to implement locks on data to ensure that updates do not inter-
fere with each other. This means services could be slow because the data that
they need are locked. The service using the data must finish its operation and
release the lock on the data.

Systems that use microservices have to be designed to tolerate some degree
of data inconsistency. The databases used by different services or service rep-
licas need not be completely consistent all of the time. Of course, you need a
means to ensure that the common data are eventually made consistent. This
may execute when the load on the system is relatively light so that overall
system performance is unaffected.

Two types of inconsistency have to be managed:

1. Dependent data inconsistency The actions or failures of one service can
cause the data managed by another service to become inconsistent.

2. Replica inconsistency Several replicas of the same service may be execut-
ing concurrently. These all have their own database copy and each updates
its own copy of the service data. You need a way of making these databases
“eventually consistent” so that all replicas are working on the same data.

To illustrate these inconsistency issues, consider a simple example of a
user placing an online order for a book. This triggers a number of services,
including:

■■ a stock management service that reduces the number of books in stock by
1 and increases the number of books that are “pending sale” by 1;

■■ an order service that places the order in a queue of orders to be fulfilled.

These services are dependent because a failure of the ordering service
means that the stock level for the book ordered is incorrect. To manage this
situation, you need to be able to detect service failure. When a failure is
detected, you need to initiate actions to correct the stock level for the book.

One way of managing this inconsistency is to use a “compensating transac-
tion,” which is a transaction that reverses the previous operation. In this case,
when the failure of the ordering service is detected, a compensating transac-
tion may be created. This is processed by the stock management service,
which increments the stock level for the book that was not actually ordered,
so it is still available.

However, compensating transactions do not guarantee that problems will
not arise. For example, in the time gap between the failure of the order service

M06_SOME6349_01_GE_C06.indd 176 30/09/2020 15:50

 6.2 ■ Microservices architecture 177

and the issue of the compensating transaction, another order could be placed.
If the failed order had reduced the number in stock to zero, then the new order
would not succeed.

To illustrate the problem of replica inconsistency, consider a situation
where two identical instances of a stock management service (A and B) are
in use. Each has its own stock database. Imagine the following scenario:

■■ Service A updates the number of books in stock for book X.

■■ Service B updates the number of books in stock for book Y.

The stock databases used in each service are now inconsistent. Service
A does not have the correct stock level for book Y, and service B does not
have the correct stock level for book X. There needs to be a way for each
instance of the service to update its own database so that all of the database
replicas become consistent. To do this, you use an “eventual consistency”
approach.

Eventual consistency means the system guarantees that the databases will
eventually become consistent. You can implement eventual consistency by
maintaining a transaction log, as shown in Figure 6.9. When a database change
is made, it is recorded on a “pending updates” log. Other service instances
look at this log, update their own database, and indicate that they have made
the change. After all services have updated their own database, the transaction
is removed from the log.

Figure 6.9 Using a pending transaction log

Pending transactions log

A1/DB update 1

A1/DB update 2

A2/DB update 1

Service A1
Database A

Service A2
Database A

M06_SOME6349_01_GE_C06.indd 177 30/09/2020 15:50

178 Chapter 6 ■ Microservices Architecture

When a service starts to process a service request, the service replica han-
dling the request checks the log to see if the data required in that request have
been updated. If so, it updates its own data from the log and then initiates its
own operation. Otherwise, the database can be updated from the log whenever
the load on the service is relatively light.

In practice, you sometimes need a more complex approach than a simple
transaction log to deal with the timing issues that can arise with concurrent
database updates. I don’t cover these more complex aspects of eventual con-
sistency here.

6.2.4 Service coordination

Most user sessions involve a series of interactions in which operations have to
be carried out in a specific order. This is called a workflow. As an example,
the workflow for UID/password authentication in which there is a limited
number of allowed authentication attempts is shown in Figure 6.10. For sim-
plicity, I’ve ignored the situation where users have forgotten their password
or UID. Operations are shown in round-edged rectangles, relevant state values
are in boxes, and choices are indicated by a diamond symbol.

In this example workflow, the user is allowed three login attempts before
the system indicates that the login has failed. The user must input both a user
name and then a password even if the user name is invalid. You should imple-
ment authentication like this so that a malicious user does not know whether
an incorrect login name or an incorrect password caused the failure.

One way to implement this workflow is to define the workflow explicitly
(either in a workflow language or in code) and to have a separate service
that executes the workflow by calling the component services in turn. This
is called “orchestration,” reflecting the notion that an orchestra conductor
instructs the musicians when to play their parts. In an orchestrated system,
there is an overall controller. The workflow shown in Figure 6.10 would be
managed by an authentication controller component.

An alternative approach that is often recommended for microservices is
called “choreography.” This term is derived from dance rather than music,
where there is no “conductor” for the dancers. Rather, the dance proceeds as
dancers observe one another. Their decision to move on to the next part of the
dance depends on what the other dancers are doing.

In a microservices architecture, choreography depends on each service
emitting an event to indicate that it has completed its processing. Other
services watch for events and react accordingly when events are observed.
There is no explicit service controller. To implement service choreography,

M06_SOME6349_01_GE_C06.indd 178 30/09/2020 15:50

 6.2 ■ Microservices architecture 179

you need additional software such as a message broker that supports a pub-
lish and subscribe mechanism. Publish and subscribe means that services
“publish” events to other services and “subscribe” to those events that they
can process.

Figure 6.11 shows this difference between choreography and orchestration.
A problem with service choreography is that there is no simple correspon-

dence between the workflow and the actual processing that takes place. This
makes choreographed workflows harder to debug. If a failure occurs during
workflow processing, it is not immediately obvious what service has failed.
Furthermore, recovering from a service failure is sometimes difficult to imple-
ment in a choreographed system.

Figure 6.10 Authentication workflow

End

Start

End

login OK

login invalid

password OK

password
invalid

attempts > 3

attempts = 1
authfail = F

authfail = T

authfail = F

Retry
login

Get login Check
login

Get
password

Check
password

Indicate
failure

Increment
attempts

attempts <= 3

authfail = T

authfail = F

M06_SOME6349_01_GE_C06.indd 179 30/09/2020 15:50

180 Chapter 6 ■ Microservices Architecture

In an orchestrated approach, if a service fails, the controller knows which
service has failed and where the failure has occurred in the overall process.
In a choreographed approach, you need to set up a service monitoring system
that can detect service failures and unavailability and react to correct these.
In the example shown in Figure 6.10, you may need a reporting service that
examines the authentication events and reports failures to the user if you
implement this using service choreography.

In his book Building Microservices, Sam Newman1 recommends that ser-
vice choreography usually be preferred to service orchestration. He argues
that using service choreography leads to a less tightly coupled system that is,
therefore, easier to change than an orchestrated system.

I disagree with this recommendation because of the debugging and failure
management issues I have explained. Service coordination using orchestration
is simpler to implement than service choreography. I advise that you start with
the simplest approach (orchestration). You should rewrite your software using
service choreography only if you find that the inflexibility of orchestrated
services is slowing down your software, or if you have problems making
software changes.

6.2.5 Failure management

The reality of any large-scale system is that things go wrong. Even when
certain types of failure have a low probability, if there are thousands of ser-
vice instances in a cloud-based system, failures will inevitably occur. Conse-
quently, services have to be designed to cope with failure.

1Sam Newman, Building Microservices (Sebastopol, CA: O’Reilly Media, 2015).

Figure 6.11 Orchestration and choreography

Authentication
controller

Service orchestration Service choreography

Authentication eventsLogin
service

Password
service

Login
service

Password
service

M06_SOME6349_01_GE_C06.indd 180 30/09/2020 15:50

 6.2 ■ Microservices architecture 181

The three kinds of failure you have to deal with in a microservices system
are shown in Table 6.3.

The simplest way to report microservice failures is to use HTTP status codes,
which indicate whether or not a request has succeeded. Service responses should
include a status that reflects the success or otherwise of the service request. Status
code 200 means the request has been successful, and codes from 300 to 500 indi-
cate some kind of service failure. Requests that have been successfully processed
by a service should always return the 200 status code.

Imagine a situation where a service is given a URL by a calling service
but, for some reason, this URL is unreachable. An HTTP GET request made
to the unreachable URL returns a status code of 404. The requested service
then has to inform the service requester that the operation has not completed
successfully. It then returns the 404 code to the calling service to indicate that
the service request had failed because of an unreachable resource.

System architects have to ensure that there is an agreed standard on what
the HTTP status codes actually mean so that all services return the same status
code for the same type of failure. HTTP status codes were designed for web
interaction, but your services will have other types of failure that should be
reported using status codes.

For example, if a service accepts an input structure representing an order
and this is malformed in some way, you might use status code 422, which is
defined to mean “Unprocessable entity.” If all your services understand that
this code means that a service has received a malformed input, then they can
cooperate to provide the client with helpful failure information.

Failure type Explanation

Internal service failure These are conditions that are detected by the service
and can be reported to the service requestor in an error
message. An example of this type of failure is a service
that takes a URL as an input and discovers that this is
an invalid link.

External service failure These failures have an external cause that affects the
availability of a service. Failure may cause the service to
become unresponsive and actions have to be taken to
restart the service.

Service performance failure The performance of the service degrades to an
unacceptable level. This may be due to a heavy load or
an internal problem with the service. External service
monitoring can be used to detect performance failures
and unresponsive services.

Table 6.3 Failure types in a microservices system

M06_SOME6349_01_GE_C06.indd 181 30/09/2020 15:50

182 Chapter 6 ■ Microservices Architecture

One way to discover whether a service that you are requesting is unavail-
able or running slowly is to put a timeout on the request. A timeout is a
counter that is associated with the service requests and starts running when
the request is made. Once the counter reaches some predefined value, such
as 10 seconds, the calling service assumes that the service request has failed
and acts accordingly.

Martin Fowler2 explains that the problem with the timeout approach is that
every service call to a “failed service” is delayed by the timeout value, so the
whole system slows down. Instead of using timeouts explicitly when a service
call is made, he suggests using a circuit breaker. Like an electrical circuit
breaker, this immediately denies access to a failed service without the delays
associated with timeouts.

Figure 6.12 illustrates the idea of a circuit breaker. In this example, service
S1 makes a request to service S2. Instead of calling a service directly, the
service call is routed through a circuit breaker.

The circuit breaker includes a service timeout mechanism that starts when
service S1 sends a request to service S2. If service S2 responds quickly, then
the response is returned to the calling service. If service S2 does not respond
after several retries, however, the circuit breaker assumes that service S2 has
failed, and it blows. This means that when a future call is made to the service
that is timing out, the circuit breaker immediately responds with a failure
status code. The requesting service does not need to wait for the requested
service to time out before detecting a problem.

If you use a circuit breaker, you can include code within the circuit breaker
that tests whether the failed service has recovered. Periodically, the circuit
breaker sends a request to the failed service. If the called service responds
quickly, the circuit breaker “resets” the circuit so that future external service
calls are routed to the now-available service. To keep the diagram simple,
however, I do not show this in Figure 6.12.

A circuit breaker is an example of a service monitoring system. In a pro-
duction microservices system, it is important to monitor the performance of
services in detail. As well as overall service response time, you may monitor
the response time of each service operation. This helps you identify possible
bottlenecks in the system. You should also monitor the failures that services
detect, as this may give you pointers to ways that the service can be improved.
Generally, service monitors produce detailed logs, and a “monitoring dash-
board” is used to analyze and present these logs to the system managers.

2https://martinfowler.com/bliki/CircuitBreaker.html

M06_SOME6349_01_GE_C06.indd 182 30/09/2020 15:50

https://martinfowler.com/bliki/CircuitBreaker.html

 6.3 ■ RESTful services 183

6.3 RESTful services

Microservices may communicate synchronously or asynchronously, using dif-
ferent protocols for message organization and communication. I don’t have
space to go into all of the possible protocols here, so I focus on one of the
most commonly used approaches for service interaction—namely, the REST-
ful “protocol.”

Strictly speaking, there is no such thing as a RESTful protocol, as this
approach has not been standardized. Rather, it is a set of conventions for ser-
vice communication based on the HTTP Internet Protocol and the hierarchical
representation of resources. RESTful services follow the REST (REpresen-
tational State Transfer) architectural style and communicate using the HTTP
protocol.

The REST architectural style is based on the idea of transferring represen-
tations of digital resources from a server to a client. This is the fundamental
approach used in the web, where the resource is a page to be displayed in
the user’s browser. An HTML representation is generated by the server in

Figure 6.12 Using a circuit breaker to cope with service failure

Circuit breaker

Check S2
availability

retries > 3

retries <= 3

timeout ok

timeout fail

S2 available

S2 unavailable

Service S1 Service S2

Set timeout Route service
request

Respond S2
unavailable

Set S2
unavailable

Route service
response

Increment
retries

Check
timeout

M06_SOME6349_01_GE_C06.indd 183 30/09/2020 15:50

184 Chapter 6 ■ Microservices Architecture

response to an HTTP GET request and is transferred to the client for display
by a browser or a special-purpose app.

The same resource may be represented in different ways. For exam-
ple, if you think of this book as a resource, it has at least four electronic
representations:

1. A representation in a format known as Markdown. This text format is
used by the Ulysses editor, which I used to write the book.

2. A representation in Microsoft Word, which is the representation I used to
deliver the book to the publisher for typesetting and editing.

3. A representation in Adobe InDesign, which is the typeset representation
of the book for printing.

4. A PDF representation, which is the delivery representation for some elec-
tronic versions of the book.

The server managing the resource is responsible for delivering that resource
in the representation requested by the client. For RESTful microservices,
JSON is the most commonly used representation for digital resources. XML
may be used as an alternative. XML is a markup language, like HTML, where
each element has opening and closing tags. These are structured notations
based on plain text that can be used to represent structured data such as data-
base records. I show examples of each of these representations later in this
section, in Table 6.7.

The RESTful architectural style assumes client–server interaction and is
defined by a number of RESTful principles as shown in Table 6.4.

Principle Explanation

Use HTTP verbs The basic methods defined in the HTTP protocol (GET, PUT, POST,
DELETE) must be used to access the operations made available by
the service.

Stateless services Services must never maintain internal state. As I have already
explained, microservices are stateless, so fit with this principle.

URI addressable All resources must have a URI, with a hierarchical structure, that
is used to access subresources.

Use XML or JSON Resources should normally be represented in JSON or XML
or both. Other representations, such as audio and video
representations, may be used if appropriate.

Table 6.4 RESTful service principles

M06_SOME6349_01_GE_C06.indd 184 30/09/2020 15:50

 6.3 ■ RESTful services 185

Resources that are accessed via their unique URI3 and RESTful services
operate on these resources. You can think of a resource as any chunk of data,
such as credit card details, an individual’s medical record, a magazine or
newspaper, a library catalog, and so on. Therefore, the following URI might
be used to reference this book in a publisher’s catalog:

http://bookpublisher.com/catalog/computer-science/software-engineering/
sommerville/Engineering-Software-Products

Four fundamental operations act on resources. Table 6.5 shows these oper-
ations and explains how they are mapped to the standard HTTP verbs.

To illustrate how this works, imagine a system that maintains information
about incidents, such as traffic delays, roadworks, and accidents on a national
road network. This system can be accessed via a browser using this URL:

https://trafficinfo.net/incidents/
Users can query the system to discover incidents on the roads they are

planning to travel.
With a RESTful web service, you need to design the resource structure

so that incidents are organized hierarchically. For example, incidents may
be recorded according to the road identifier (e.g., A90), the location (e.g.,
Stonehaven), the carriageway direction (e.g., north), and an incident number
(e.g., 1). Therefore, each incident can be accessed using its URI:

https://trafficinfo.net/incidents/A90/stonehaven/north/1

3A URI (uniform resource identifier) is a means of identifying resources. For practical pur-
poses, you can think of it as the same as a URL. There are subtle differences, which are
explained here: https://danielmiessler.com/study/url-uri/#gs.uK=UmgM

Action Implementation

Create Implemented using HTTP POST, which creates the resource with
the given URI. If the resource has already been created, an error is
returned.

Read Implemented using HTTP GET, which reads the resource and returns
its value. GET operations should never update a resource so that
successive GET operations with no intervening PUT operations always
return the same value.

Update Implemented using HTTP PUT, which modifies an existing resource. PUT
should not be used for resource creation.

Delete Implemented using HTTP DELETE, which makes the resource
inaccessible using the specified URI. The resource may or may not be
physically deleted.

Table 6.5 RESTful service operations

M06_SOME6349_01_GE_C06.indd 185 30/09/2020 15:50

http://bookpublisher.com/catalog/computer-science/software-engineering/sommerville/Engineering-Software-Products
https://trafficinfo.net/incidents/
https://trafficinfo.net/incidents/A90/stonehaven/north/1
https://danielmiessler.com/study/url-uri/#gs.uK=UmgM
http://bookpublisher.com/catalog/computer-science/software-engineering/sommerville/Engineering-Software-Products

186 Chapter 6 ■ Microservices Architecture

Accessing this URI returns a description of the incident, including the
time reported, its status such as minor, significant, or serious, and a narrative
explanation as shown in Table 6.6.

Four operations are supported by this information service:

1. Retrieve returns information about a reported incident or incidents;
accessed using the GET verb.

2. Add adds information about a new incident; accessed using the POST verb.

3. Update updates the information about a reported incident; accessed using
the PUT verb.

4. Delete deletes an incident. The DELETE verb is used when an incident
has been cleared.

RESTful microservices accept HTTP requests based on the RESTful style,
process these requests, and create HTTP responses to them (Figure 6.13).

Incident ID: A90N17061714391

Date: 17 June 2017

Time reported: 1439

Severity: Significant

Description: Broken-down bus on north carriageway. One lane closed. Expect delays of up
to 30 minutes.

Table 6.6 Incident description

Figure 6.13 HTTP request and response processing

HTTP
response

Service
actions

Microservice

Request
processing

Response
generation

HTTP
request

M06_SOME6349_01_GE_C06.indd 186 30/09/2020 15:50

 6.3 ■ RESTful services 187

Figure 6.14 shows how requests for a RESTful service and the responses
from that service are structured and organized as HTTP messages.

The request and response header component of a message includes
metadata about the message body as well as other information about the
server, the length of the message, and so on. Most of these details are unim-
portant and some elements are usually created automatically by your web
development environment. For microservices, the critical elements are:

1. Accept specifies the content-types that can be processed by the request-
ing service and that are therefore acceptable in the service response.
Commonly used types are text/plain and text/json. These specify that the
response can be either plain text or JSON.

2. Content-Type specifies the content-type of the request or response body.
For example, text/json specifies that the request body includes structured
JSON text.

3. Content-Length specifies the length of the text in the response body. If
this is zero, it means there is no text in the request/response body.

Figure 6.14 HTTP request and response message organization

[Request header]

[Request body]

REQUEST

[HTTP verb] [URI] [HTTP version]

[Response header]

[Response body]

RESPONSE

[Response code][HTTP version]

XML JSON

<id>
A90N17061714391
</id>
<date>
20170617
</date>
<time>
1437
</time>
 . . .
<description>
Broken-down bus on north carriageway.
One lane closed. Expect delays of up to
30 minutes.
</description>

{
id: “A90N17061714391”,
“date”: “20170617”,
“time”: “1437”,
“road_id”: “A90”,
“place”: “Stonehaven”,
“direction”: “north”,
“severity”: “significant”,
“description”: “Broken-down bus on north
carriageway. One lane closed. Expect
delays of up to 30 minutes.”
}

Table 6.7 XML and JSON incident descriptions

M06_SOME6349_01_GE_C06.indd 187 30/09/2020 15:50

188 Chapter 6 ■ Microservices Architecture

The body of the request or response includes the service parameters and is
usually represented in JSON or XML. Table 6.7 shows how a message body
might be structured in XML and JSON.

XML is a flexible notation, but quite a lot of overhead is involved in pars-
ing and constructing XML messages. As I explained in Chapter 4, JSON is a
simpler structured notation that is more widely used than XML because it is
easier to read and process.

Figure 6.15 shows the structure of a GET request for information about
incidents at Stonehaven and the message generated by the server in response
to that request. If there are no incidents, the service returns status code 204,
which indicates that the request has been successfully processed but there is
no associated content.

Figure 6.15 A GET request and the associated response

REQUEST

GET HTTP/1.1

...
Content-Length: 461
Content-Type: text/json

RESPONSE

HTTP/1.1 200incidents/A90/stonehaven/

Host: trafficinfo.net
...
Accept: text/json, text/xml, text/plain
Content-Length: 0

{
 “number”: “A90N17061714391”,
 “date”: “20170617”,
 “time”: “1437”,
 “road_id”: “A90”,
 “place”: “Stonehaven”,
 “direction”: “north”,
 “severity”: “significant”,
 “description”: “Broken-down bus on north
 carriageway. One lane closed. Expect
delays of up to 30 minutes.”
}
{
 “number”: “A90S17061713001”,
 “date”: “20170617”,
 “time”: “1300”,
 “road_id”: “A90”,
 “place”: “Stonehaven”,
 “direction”: “south”,
 “severity”: “minor”,
 “description”: “Grass cutting on verge.
Minor delays”
}

M06_SOME6349_01_GE_C06.indd 188 30/09/2020 15:50

http://trafficinfo.net

 6.4 ■ Service deployment 189

The diagram is largely self-explanatory but these are the key points:

1. The GET request has no message body and a corresponding Content-
Length of zero. GET requests only need a message body if you have to
specify that some kind of selector is to be applied to the information that
is to be returned.

2. The URI specified in the GET request does not include the name of the
host server. The name is specified separately. It is mandatory to provide
a host name in the request header.

3. The response includes a 200 response code, which means that the request
has been successfully processed.

As the HTML transfer protocol used by most RESTful services is a
request/response protocol, RESTful services are normally synchronous
services.

6.4 Service deployment

After a system has been developed and delivered, it has to be deployed on servers,
monitored for problems, and updated as new versions become available. Tra-
ditionally, the tasks of managing an operational system were seen as separate
from development. The system admin team had different skills from the system
developers.

When a system is composed of tens or even hundreds of microservices,
deployment of the system is more complex than for monolithic systems.
The service development teams decide which programming language, data-
base, libraries, and other support software should be used to implement
their service. Consequently, there is no “standard” deployment configura-
tion for all services. Furthermore, services may change very quickly and
there is the potential for a “deployment bottleneck” if a separate system
admin team is faced with the problem of updating several services at the
same time.

Consequently, when a microservices architecture is used, it is now normal
practice for the development team to be responsible for deployment and ser-
vice management as well as software development. This approach is known
as DevOps—a combination of “development” and “operations.” I discuss
general issues of DevOps and the benefits of this approach in Chapter 10.

M06_SOME6349_01_GE_C06.indd 189 30/09/2020 15:50

190 Chapter 6 ■ Microservices Architecture

A general principle of microservice-based development is that the ser-
vice development team has full responsibility for their service, including the
responsibility of deciding when to deploy new versions of that service. Good
practice in this area is now to adopt a policy of continuous deployment. Con-
tinuous deployment means that as soon as a change to a service has been made
and validated, the modified service is re-deployed.

This contrasts with the approach used for software products that are
installed on a user’s own computer. In this situation, the software is deployed
in a series of releases. New versions of the software are released periodically,
typically three or four times per year. Changes to the system to introduce new
features and to fix non-critical bugs are bundled into each new release. Critical
bug fixes may be distributed as patches between releases.

Continuous deployment depends on automation so that as soon as a change
is committed, a series of automated activities is triggered to test the software.
If the software “passes” these tests, it then enters another automation pipeline
that packages and deploys the software. Figure 6.16 is a simplified diagram
of the continuous deployment process.

The deployment of a new service version starts with the programmer com-
mitting the code changes to a code management system such as Git (covered
in Chapter 10). This automatically triggers a set of automated tests that run
using the modified service. If all service tests run successfully, a new version

Figure 6.16 A continuous deployment pipeline

Commit change
to version

management

Triggers

pass

Reject change Reject change Reject change

Reject change

pass

pass

fail

fail

fail

Run unit
tests

Containerize
service

Run integra-
tion tests

Build test
system

Replace
current service

Deploy service
container

Run accept-
ance tests

fail

pass

M06_SOME6349_01_GE_C06.indd 190 30/09/2020 15:50

 6.4 ■ Service deployment 191

of the system that incorporates the changed service is created. Another set of
automated system tests are then executed. If these run successfully, the service
is ready for deployment.

Deployment involves adding the new service to a container and installing the
container on a server. Automated “whole system” tests are then executed. If these
system tests run successfully, the new version of the service is put into production.

Containers (covered in Chapter 5) are usually the best way to package a
cloud service for deployment. Recall that a container is a virtualized envi-
ronment that includes all the software that a service needs. Containers are a
deployment unit that can execute on different servers so that the service devel-
opment team does not have to take server configuration issues into account.
As service dependencies can be predefined and a service container created,
deploying a microservice simply involves loading the executable code into the
container and then deploying that container on a server or servers.

A large-scale system of microservices may involve managing tens or pos-
sibly hundreds of containers that are deployed in the cloud. Managing a large
set of communicating containers is a significant problem, so container man-
agement systems such as Kubernetes automate container deployment and
management. Kubernetes provides Docker container scheduling on a cluster
of servers, service discovery, load balancing, and server resource manage-
ment. Container management is too specialized for this book, so I don’t go
into any more detail here. However, I provide a link to information about
Kubernetes in the Recommended Reading section of this chapter.

A general risk of deploying new software services is that unanticipated
problems will be caused by the interactions between the new version of the
service and existing services. Testing can never completely eliminate this
risk. Consequently, in a microservices architecture, you need to monitor the
deployed services to detect problems. If a service fails, you should roll back
to an older version of the service.

If you use an API gateway, as shown in Figure 6.5, you could do this by
accessing services through a “current version” link. When you introduce a
new version of a service, you maintain the old version but change the cur-
rent version link to point at the new service. If the monitoring system detects
problems, it then switches the link back to the older service. I illustrate this
in Figure 6.17.

In Figure 6.17, a service request for a cameras service, which might be
included in a road incidents information system, is routed to version 002
of that service. The response is returned through the service monitor. If the
monitor detects a problem with version 002, it switches the “current version
link” back to version 001 of the cameras service.

M06_SOME6349_01_GE_C06.indd 191 30/09/2020 15:50

192 Chapter 6 ■ Microservices Architecture

Many service changes are transparent to other services. They do not
change the service’s API, so dependent services should be unaffected by the
change. However, service API’s must sometimes change. Services that use
the changed service have to be modified, but they must be able to access the
service using the older API until those changes have been made.

You can do this by ensuring that the identifier for each service includes the
service version number. For example, if you use RESTful services, you can
include this version number as part of the resource’s URI:

https://trafficinfo.net/incidents/cameras/001/A90/stonehaven/north/1
In this example, the version number is 001. When you introduce a new

version of the service, you update the version number. It makes sense to use
a numbering convention so that you can identify whether a new version has
introduced an API change. For example, you can indicate API changes by
changing the first digit of the version number so that version 001 becomes
version 101:

https://trafficinfo.net/incidents/cameras/101/A90/stonehaven/north/1
User services can be informed of the API change and can, in time, be

changed to use the new service version with the updated API.

Figure 6.17 Versioned services

API
gateway Cameras

service request
for cameras service current version

link

service
response

cameras service
response

monitor
 response

Service
monitor

Cameras
001

Cameras
002

K E Y P O I N T S

■■ A microservice is an independent and self-contained software component that runs in its
own process and communicates with other microservices using lightweight protocols.

■■ Microservices in a system can be implemented using different programming languages and
database technologies.

M06_SOME6349_01_GE_C06.indd 192 30/09/2020 15:50

https://trafficinfo.net/incidents/cameras/001/A90/stonehaven/north/1
https://trafficinfo.net/incidents/cameras/101/A90/stonehaven/north/1

 Recommended Reading 193

■■ Microservices have a single responsibility and should be designed so that they can be easily
changed without having to change other microservices in the system.

■■ Microservices architecture is an architectural style in which the system is constructed
from communicating microservices. It is well suited to cloud-based systems where each
microservice can run in its own container.

■■ The two most important responsibilities of architects of a microservices system are to decide
how to structure the system into microservices and to decide how microservices should
communicate and be coordinated.

■■ Communication and coordination decisions involve microservice communication protocols,
data sharing, whether services should be centrally coordinated, and failure management.

■■ The RESTful architectural style is widely used in microservice-based systems. Services are designed
so that the HTTP verbs—GET, POST, PUT, and DELETE—map onto the service operations.

■■ The RESTful style is based on digital resources that, in a microservices architecture, may be
represented using XML or, more commonly, JSON.

■■ Continuous deployment is a process in which new versions of a service are put into
production as soon as a service change has been made. It is a completely automated process
that relies on automated testing to check that the new version is of production quality.

■■ If continuous deployment is used, you may need to maintain multiple versions of deployed services
so that you can switch to an older version if problems are discovered in a newly deployed service.

R E C O M M E N D E D R E A D I N G

Building Microservices This book is an excellent and readable overview of microservices and the issues
to be considered when constructing microservices architectures. (S. Newman, O’Reilly, 2015)

“Microservices” This is probably the most readable introduction to microservices that I have
found. I highly recommend it. (J. Lewis and M. Fowler, 2014)

https://martinfowler.com/articles/microservices.html

“RESTful Web Services: A Tutorial” Many tutorials on RESTful web services are available and
naturally they are very similar. This tutorial is a comprehensive and clear introduction to the
RESTful approach to web service implementation. (M. Vaqqas, 2014)

http://www.drdobbs.com/web-development/restful-web-services-a-tutorial/240169069

“Is REST Best in a Microservices Architecture?” This article questions whether the RESTful approach
is the best one to use in a microservices architecture. It suggests that in many circumstances a better
approach is to use asynchronous messaging through a message broker. (C. Williams, 2015)

https://capgemini.github.io/architecture/is-rest-best-microservices/

M06_SOME6349_01_GE_C06.indd 193 30/09/2020 15:50

https://martinfowler.com/articles/microservices.html
http://www.drdobbs.com/web-development/restful-web-services-a-tutorial/240169069
https://capgemini.github.io/architecture/is-rest-best-microservices/

194 Chapter 6 ■ Microservices Architecture

“Kubernetes Primer” This is a good introduction to the Kubernetes container management
system. (CoreOS, 2017)

https://coreos.com/resources/index.html#ufh-i-339012759-kubernetes-primer

“Continuous Delivery” Continuous delivery is often used as another name for continuous
deployment. This blog includes a series of articles on this topic that expand on the material in this
chapter. (J. Humble, 2015)

https://continuousdelivery.com/

P R E S E N T A T I O N S , V I D E O S , A N D L I N K S

https://iansommerville.com/engineering-software-products/microservices-architecture

E X E R C I S E S

 6.1 What are the advantages of using services as the fundamental component in a distributed
software system?

 6.2 Based on the functional breakdown of the authentication features shown in Figure 6.1,
create a corresponding breakdown for two-factor authentication and password recovery.

 6.3 Explain why microservices should have low coupling and high cohesion.

 6.4 What are the principal problems with multi-tier software architectures? How does a
microservices architecture help with these problems?

 6.5 Explain the differences between synchronous and asynchronous microservices
interactions.

 6.6 Explain why each microservice should maintain its own data. Explain how data in service
replicas can be kept consistent?

 6.7 What is a timeout and how is it used in service failure management? Explain why a circuit
breaker is a more efficient mechanism than timeouts for handling external service failures.

 6.8 Explain what is meant by a “resource.” How do RESTful services address resources and
operate on them?

 6.9 Consider the Upload service for photographs to be printed as shown in Figure 6.5. Suggest how
this might be implemented and then design a RESTful interface for this service, explaining the
function of each of the HTTP verbs. For each operation, identify its input and output.

 6.10 Why should you use continuous deployment in a microservices architecture? Briefly explain
each of the stages in the continuous deployment pipeline.

M06_SOME6349_01_GE_C06.indd 194 30/09/2020 15:50

https://coreos.com/resources/index.html#ufh-i-339012759-kubernetes-primer
https://continuousdelivery.com/
https://iansommerville.com/engineering-software-products/microservices-architecture

Security and Privacy

Software security should always be a high priority for product developers
and users. If you don’t prioritize security, you and your customers will inevi-
tably suffer losses from malicious attacks. The aim of the attacks may be to
steal data or hijack a computer for some criminal purpose. Some attacks try
to extort money from a user by encrypting data and demanding a fee for the
decryption key, or by threatening a denial of service attack on their servers.

In the worst case, these attacks could put product providers out of business.
If providers are delivering a product as a service and it is unavailable or if
customer data are compromised, customers are liable to cancel their subscrip-
tions. Even if they can recover from the attacks, this will take a lot of time and
effort that would have been better spent working on their software.

Figure 7.1 shows the three main types of threat that computer systems face.
Some attacks may combine these threats. For example, a ransomware attack
is a threat to the integrity of a system, as it damages data by encrypting them.
This makes normal service impossible. Therefore, it is also a threat to the
availability of a system.

Security is a system-wide problem. Application software is dependent on
an execution platform that includes an operating system, a web server, a lan-
guage run-time system, and a database. We also depend on frameworks and
code generation tools to reuse software that others have developed. Figure 7.2
is a diagram of a system stack that shows the infrastructure systems that your
software product may use.

Attacks may target any level in this stack, from the routers that control
the network to the reusable components and libraries used by your product.
However, attackers usually focus on software infrastructure—the operating
system, web browsers, messaging systems, and databases. Everyone uses
these, so they are the most effective targets for external attacks.

7

M07_SOME6349_01_GE_C07.indd 195 27/09/2020 14:05

196 Chapter 7 ■ Security and Privacy

Figure 7.1 Types of security threat

SOFTWARE PRODUCT

PROGRAM

DATA

Availability
threats

Integrity
threats

Confidentiality
threats

An attacker attempts
to damage the system

or its data.

An attacker attempts
to deny access to the system

for legitimate users.

An attacker tries to gain
access to private information

held by the system.

Example: Data theft

Example: Distributed denial-
of-service attack

Example: Virus

Example: Ransomware

Figure 7.2 System infrastructure stack

Software infrastructure

Application

Operational environment

Frameworks and application libraries

Network

Operating system

Database

System libraries

Browsers and messaging

M07_SOME6349_01_GE_C07.indd 196 27/09/2020 14:05

 Chapter 7 ■ Security and Privacy 197

Maintaining the security of your software infrastructure is a system man-
agement rather than a software development issue. You need management
procedures and policies to minimize the risk of a successful attack that could
ultimately compromise your application system (Table 7.1). Software, such
as browsers and operating systems, needs to be updated to ensure that secu-
rity flaws are fixed. They must be correctly configured so that there are no
loopholes that attackers can use to gain access.

Operational security focuses on helping users to maintain security. Attacks
on users are very common. Generally, the aim of the attacker is to trick users
into disclosing their credentials or accessing a website that includes malware
such as a key-logging system. To maintain operational security, you need
procedures and practices that advise users how to use your system securely
and regular reminders to users of these procedures.

If you offer your product as a cloud-based service, you should include
features that help users manage operational security and deal with security
problems that may arise. For example:

1. Auto-logout addresses the common problem of users forgetting to log out
from a computer used in a shared space. This feature reduces the chances
of an unauthorized person gaining access to the system.

Procedure Explanation

Authentication and authorization You should have authentication and
authorization standards and procedures that
ensure that all users have strong authentication
and that they have properly set up access
permissions. This minimizes the risk of
unauthorized users accessing system resources.

System infrastructure management Infrastructure software should be properly
configured, and security updates that patch
vulnerabilities should be applied as soon as they
become available.

Attack monitoring The system should be regularly checked for
possible unauthorized access. If attacks are
detected, it may be possible to put resistance
strategies in place that minimize the effects of
the attack.

Backup Backup policies should be implemented to
ensure that you keep undamaged copies of
program and data files. These can then be
restored after an attack.

Table 7.1 Security management

M07_SOME6349_01_GE_C07.indd 197 27/09/2020 14:05

198 Chapter 7 ■ Security and Privacy

2. User command logging makes it possible to discover actions taken by users
that have deliberately or accidentally damaged some system resources. This
feature helps to diagnose problems and recover from them and also deters
malicious legitimate users, as they know that their behavior will be logged.

3. Multifactor authentication reduces the chances of an intruder gaining
access to the system using stolen credentials.

Security is a huge topic and my aim here is to introduce some important
aspects that are relevant to product developers. This chapter gives you a basic
understanding of the issues, but I don’t cover detailed security implementation.

7.1 Attacks and defenses

Many types of attack may affect a software system. They depend on the type
of system, the way it has been implemented, the potential vulnerabilities in the
system, and the environment where the system is used. I focus here on some
of the most common types of attack on web-based software.

The targets of the attacks on a computer system may be the system
 provider or the users of the system. Distributed denial-of-service attacks (see
 Section 7.1.4) on servers aim to disable access to a system so that users are
locked out and the system provider loses revenue. Ransomware attacks dis-
able individual systems in some way and demand a ransom from users to
unlock their computers. Data theft attacks may target personal data that can
be sold or credit card numbers that can be used illegally.

A fundamental requirement for most attacks is for attackers to be able to
authenticate themselves to your system. This usually involves stealing the
credentials of a legitimate user. The most common way of doing this is to use
social engineering techniques where users click on an apparently legitimate
link in an email. This may take them to a lookalike site where they enter their
credentials, which are then available to the attacker. Alternatively, the link
may take them to a website that installs malware, such as a key logger, that
records the user’s keystrokes and sends them to the attackers.

7.1.1 Injection attacks

Injection attacks are a type of attack where a malicious user uses a valid
input field to input malicious code or database commands. These malicious

M07_SOME6349_01_GE_C07.indd 198 27/09/2020 14:05

 7.1 ■ Attacks and defenses 199

instructions are then executed, causing some damage to the system. Code
can be injected that leaks system data to the attackers. Common types
of injection attack include buffer overflow attacks and SQL poisoning
attacks.

Buffer overflow attacks are possible when systems are programmed in C
or C++. These languages do not automatically check that an assignment to an
array element is within the array bounds. You can declare a buffer as an array
of a specific size, but the run-time system does not check whether an input
exceeds the length of that buffer.

An attacker who understands how the system memory is organized can
carefully craft an input string that includes executable instructions. This over-
writes the memory and, if a function return address is also overwritten, control
can then be transferred to the malicious code.

Modern software products are not usually developed in C or C++, so
this type of attack is unlikely to be a major problem for web-based and
mobile software products. Most programming languages check for buffer
overflows at run time and reject long, malicious inputs. Operating systems
and libraries are often written in C or C++, however. If inputs are passed
directly from your system to an underlying system function, buffer overflow
is a possibility.

SQL poisoning attacks are attacks on software products that use an SQL
database. They take advantage of a situation where a user input is part of an
SQL command. For example, the following SQL command is intended to
retrieve a database record for a single account holder:

SELECT * FROM AccountHolders WHERE accountnumber = '34200645'

This statement should return those records in the table called Accountholders
where the accountnumber field matches ‘34200645’. The single quotes iden-
tify a string to be matched against the named field.

Normally, the account number is input on a form. Let’s assume you use a
function called getAccountNumber to retrieve this. You can then create this
SQL command:

accNum = getAccountNumber ()

SQLstat = "SELECT * FROM AccountHolders WHERE accountnumber = '"

+ accNum + "';"

database.execute (SQLstat)

M07_SOME6349_01_GE_C07.indd 199 27/09/2020 14:05

200 Chapter 7 ■ Security and Privacy

This creates a valid SQL statement by catenating the SELECT part with
the input variable accNum and adding a semicolon to end the SQL statement.
Single quotes must still be included, as the value of accNum is substituted.
This generated SQL statement can then be run against the database.

Now imagine that a malicious user inputs the account number as “10010010’
OR ‘1’ = ‘1”. When this is inserted into the SQL query, it becomes

SELECT * from AccountHolders WHERE accountnumber = ‘10010010’ OR ‘1’ = ‘1’;

The final condition is obviously always true, so the query is equivalent to

SELECT * from AccountHolders

Therefore, details of all account holders are returned and displayed to the
malicious user.

SQL poisoning attacks are possible only when the system does not check
the validity of the inputs. In this case, if we know that account numbers
are eight digits, then the input function getAccountNumber should include
an input check for characters other than digits. This would then reject the
injected SQL code.

Validating all user inputs is the key to combating injection attacks. I explain
how input validation can be implemented in Chapter 8.

7.1.2 Cross-site scripting attacks

Cross-site scripting attacks are another form of injection attack. An attacker
adds malicious Javascript code to a web page that is returned from a server
to a client, and this script is executed when the page is displayed in the user’s
browser. The malicious script may steal customer information or direct cus-
tomers to another website that may try to capture personal data or display
advertisements. Cookies may be stolen, which makes a session hijacking
attack possible.

The various kinds of cross-site scripting attacks are described in the XSS
scripting tutorial that I include in the Recommended Reading section. They
all take the same general form, shown in Figure 7.3, which shows an attack
to steal a session cookie.

There are three actors in the scenario shown in Figure 7.3: an attacker, a
legitimate website that provides user services, and a victim of the attack, who
accesses the legitimate website.

M07_SOME6349_01_GE_C07.indd 200 27/09/2020 14:05

 7.1 ■ Attacks and defenses 201

Figure 7.3 Cross-site scripting attack

Attacker
1.

Introduce
malicious code

Victim

Product website

Website

3.
Malware script

sends session cookie
to attacker

Malicious code
added to valid data

Valid request for data
from website

2.
Data delivered and malware

script installed in victim’s browser

Browser

Browser

In the simplest type of cross-site scripting attack, the attacker replaces
some legitimate information on the website with a malicious script. When the
victim accesses that information, a web page is generated that includes the
malicious script as well as the legitimate information requested by the victim.
This is sent to the victim’s browser, where the malicious code is executed. In
this example, the malware steals the session cookie. This gives the attacker
access to user information on the product website.

As with other types of injection attack, cross-site scripting attacks may
be avoided by input validation. Attackers often add the malicious script to
the database using a legitimate form. If this is checked for invalid inputs,
then the malicious script can be rejected. Another line of defense is to check
input from the database before adding it to a generated page. Finally, it is
possible to use the HTML “encode” command, which states that informa-
tion added to a web page is not executable but should be treated as data by
the client’s browser.

7.1.3 Session hijacking attacks

When a user authenticates with a web application, a session is created.
A session is a time period during which the user’s authentication is valid.
The user doesn’t have to re-authenticate for subsequent system interactions.
The session is closed when the user logs out from a system. Alternatively, the
session may be closed when the system “times out” because there have been
no user inputs for a period of time.

M07_SOME6349_01_GE_C07.indd 201 27/09/2020 14:05

202 Chapter 7 ■ Security and Privacy

Action Explanation

Traffic encryption Always encrypt the network traffic between clients and
your server. This means setting up sessions using https
rather than http. If traffic is encrypted, it is harder to
monitor to find session cookies.

Multifactor authentication Always use multifactor authentication and require
confirmation of new actions that may be damaging. For
example, before a new payee request is accepted, you
could ask the user to confirm their identity by inputting a
code sent to their phone. You could also ask for password
characters to be input before every potentially damaging
action, such as transferring funds.

Short timeouts Use relatively short timeouts on sessions. If there has
been no activity in a session for a few minutes, the
session should be ended and future requests directed to
an authentication page. This reduces the likelihood that an
attacker can access an account if a legitimate user forgets
to log off when they have finished work.

Table 7.2 Actions to reduce the likelihood of session hijacking

The authentication process involves placing a token on the user’s computer
or mobile device. This is called a session cookie. It is sent from the server to the
client at the beginning of a session. The session cookie is used by the server to
keep track of user actions. Each time the user makes an http request, the session
cookie is sent to the server so that it can link this to previous actions.

Session hijacking is a type of attack where an attacker acquires a valid
session cookie and uses it to impersonate a legitimate user. There are several
ways an attacker can find out the session cookie value, including cross-site
scripting attacks and traffic monitoring. In a cross-site scripting attack, the
installed malware sends session cookies to the attackers. Traffic monitoring
involves attackers capturing the traffic between the client and the server. The
session cookie can then be identified by analyzing the data exchanged. Traf-
fic monitoring is relatively easy if unsecured Wi-Fi networks are used and
unencrypted data are exchanged.

Session hijacking may be active or passive. In active session hijacking, the
attacker takes over a user session and carries out user actions on a server. So,
if a user is logged on to a bank, the attacker can set up a new payee account
and transfer money to this account. Passive session hijacking occurs when the
attacker simply monitors the traffic between the client and the server, looking
for valuable information such as passwords and credit card numbers.

Table 7.2 shows various actions you can take to reduce the likelihood of a
session hijacking attack.

M07_SOME6349_01_GE_C07.indd 202 27/09/2020 14:05

 7.1 ■ Attacks and defenses 203

7.1.4 Denial-of-service attacks

Denial-of-service attacks are attacks on a software system that are intended
to make that system unavailable for normal use. They might be used by mali-
cious attackers who disagree with the policies or actions of the product ven-
dor. Alternatively, attackers might threaten a product provider with a denial
of service attack and demand payment not to carry out the threat. They set the
level of “ransom” lower than the amount they expect the product provider to
lose if their system is out of service.

Distributed denial-of-service (DDOS) attacks are the most common type
of denial-of-service attacks. These involve distributed computers that have
usually been hijacked as part of a botnet, sending hundreds of thousands of
requests for service to a web application. There are so many of these that
legitimate users are denied access.

Combating a DDOS attack is a system-level activity. Most cloud providers
have specialist software available that can detect and drop incoming packets
and thus help restore your services to normal operation.

Other types of denial-of-service attacks target application users. For exam-
ple, user lockout attacks take advantage of a common authentication policy
that locks out a user after a number of failed authentication attempts. Users
often use their email address as their login name, so if an attacker has access to
a database of email addresses, he or she can try to log in using these addresses.
The aim is to lock users out rather than gain access and so deny the service
to these users.

There have been so many security breaches that it is relatively easy to get
lists of email addresses, and these are often used as user identifiers. If you
don’t lock accounts after failed validation, then you run the risk of attackers
being able to log in to your system. If you do, you may be denying access to
legitimate users.

You can take two actions to reduce the damage that such an attack may
cause:

1. Temporary lockouts If you lock out a user for a short time after failed
authentication, the user can regain access to your system after a few min-
utes. This makes it much more complex for attackers to continue their
attack, as they have to continually repeat previous login attempts.

2. IP address tracking You may log the IP addresses normally used by users
to access your system. If there are failed login attempts from a different
IP address, then you can lock out further attempts from that address but
allow logins from the user’s usual IP addresses.

M07_SOME6349_01_GE_C07.indd 203 27/09/2020 14:05

204 Chapter 7 ■ Security and Privacy

Sometimes attackers are simply vandals whose aim is to crash an appli-
cation with no monetary motive. They try to do this by inputting very long
strings into forms in the hope that these will not be detected. These attacks
are relatively simple to circumvent by using input validation and by handling
all exceptions that arise when unexpected input is detected.

7.1.5 Brute force attacks

Brute force attacks are attacks on a web application where the attacker has
some information, such as a valid login name, but does not have the password
for the site. The attacker creates different passwords and tries to log in with
each of these. If the login fails, the attacker then repeatedly tries again with
a different password.

Attackers may use a string generator that generates every possible combi-
nation of letters and numbers and use these as passwords. You may think this
would take a long time, but all strings of six characters or fewer can be gener-
ated in a few seconds. You can check this using one of the password checkers
on the web.1 The time required to generate passwords depends on the length
of the password, so long passwords are more secure.

To speed up the process of password discovery, attackers take advantage
of the fact that many users choose easy-to-remember passwords. They start
by trying passwords from the published lists of the most common passwords.
They then usually try a dictionary attack, using all the words in a dictionary.
People find it difficult to remember random character strings, so they choose
real words that have some significance for them.

Because brute force attacks involve successive retries, many sites block
users after a small number of attempts. The problem with this, as I explained
in Section 7.1.4, is that this action blocks out legitimate users. An attacker
who has a list of user logins and blocks access to all of them can cause wide-
spread disruption.

Brute force attacks rely on users setting weak passwords, so you can
circumvent them by insisting that users set long passwords that are not
in a dictionary and are not common words. Two-factor authentication,
explained in the next section, is also an effective way of deterring these
attacks.

1For example: https://howsecureismypassword.net/

M07_SOME6349_01_GE_C07.indd 204 27/09/2020 14:05

https://howsecureismypassword.net/

 7.2 ■ Authentication 205

7.2 Authentication

Authentication is the process of ensuring that a user of your system is who
they claim to be. You need authentication in all software products that main-
tain user information so that only the providers of that information can access
and change it. You also use authentication to learn about your users so that
you can personalize their experience of using your product.

Authentication in software products is based on one or more of three
approaches—namely, user knowledge, user possession, and user attributes
(Figure 7.4).

Knowledge-based authentication relies on users providing secret, personal
information when registering to use the system. Each time a user logs on, the
system asks for some or all of this information. If the information provided
matches the registered information, the authentication is successful. Pass-
words are the most widely used method of knowledge-based authentication.
An alternative, which is often used with passwords, is personal questions
that the authenticating user must answer, such as “name of first school” or
“favorite film.”

Possession-based authentication relies on the user having a physical device
that can be linked to the authenticating system. This device can generate or
display information that is known to the authenticating system. The user then
inputs this information to confirm that they possess the authenticating device.

The most commonly used version of this type of authentication relies on the
user providing their mobile phone number when registering for an account.
The authenticating system sends a code to the user’s phone number. The user
has to input this code to complete the authentication.

An alternative approach, which is used by some banks, is based on a
 special-purpose device that can generate one-time codes. The device calculates

Figure 7.4 Authentication approaches

Mobile
device

Authentication approach Example

Authenticating user Fingerprint

Password

Attribute

Possession

Knowledge

M07_SOME6349_01_GE_C07.indd 205 27/09/2020 14:05

206 Chapter 7 ■ Security and Privacy

a code based on some aspect of the user input. The user inputs this code and it
is compared with the code generated by the authenticating system, using the
same algorithm as that encoded in the device.

Attribute-based authentication is based on a unique biometric attribute of
the user, such as a fingerprint, which is registered with the system. Some
mobile phones can authenticate in this way; others use face recognition for
authentication. In principle, this is a very secure approach to authentication,
but there are still reliability issues with the hardware and recognition software.
For example, fingerprint readers often don’t work if the user has hot, damp
hands.

Each of these approaches to authentication has advantages and disadvan-
tages. Therefore, to strengthen authentication, many systems now use multi-
factor authentication, which combines approaches. Service providers, such as
Google, offer two-stage authentication; after inputting a password, the user
has to input a code sent to the mobile phone. Using a phone provides another
level of security, as the phone has to be unlocked using a code, fingerprint,
or in some other way.

If your product is delivered as a cloud service, the most practical authen-
tication approach is knowledge-based authentication based on a password,
possibly backed up with other techniques. Everyone is familiar with this
authentication method. Unfortunately, password-based authentication has
well-known weaknesses, as listed in Table 7.3.

You can reduce the risks of password-based authentication by forcing users
to set strong passwords. However, this increases the chances that they will

Weakness Explanation

Insecure passwords Users choose passwords that are easy to remember. However,
it is also easy for attackers to guess or generate these
passwords, using either a dictionary or a brute force attack.

Phishing attacks Users click on an email link that points to a fake site that tries
to collect their login and password details.

Password reuse Users use the same password for several sites. If there is a
security breach at one of these sites, attackers then have
passwords that they can try on other sites.

Forgotten passwords Users regularly forget their passwords, so you need to set up a
password recovery mechanism to allow these to be reset. This
can be a vulnerability if users’ credentials have been stolen and
attackers use that mechanism to reset their passwords.

Table 7.3 Weaknesses of password-based authentication

M07_SOME6349_01_GE_C07.indd 206 27/09/2020 14:05

 7.2 ■ Authentication 207

forget their password. You may also ask that individual letters rather than the
whole password are input, which means the whole password is not revealed
to key-logging malware. You may augment password-based authentication
with knowledge-based authentication and require users to answer questions
as well as input a password.

The level of authentication that you need depends on your product. If you
do not store confidential user information but use authentication to recognize
your users, then knowledge-based authentication may be all you need. If you
hold confidential user details, however, such as financial information, you
should not use knowledge-based authentication on its own. People are now
used to two-stage authentication, so you should use phone-based authentica-
tion as well as passwords and possibly personal questions.

Implementing a secure and reliable authentication system is expensive and
time-consuming. Although toolkits and libraries, such as OAuth, are avail-
able for most of the major programming languages, there is still a lot of pro-
gramming effort involved. Unlike some other aspects of a product, you can’t
release partial implementations of an authentication system with the aim of
extending them in later releases.

For this reason, it is best to think of authentication as a service, even if you
are not using a service-oriented approach to build your product. An authen-
tication service can be outsourced using a federated identity system. If you
build your own system, you can use a “safer” programming language, such as
Java, with more extensive checking and static analysis tools to develop your
authentication service. This increases the chances of finding vulnerabilities
and programming errors. Your authentication service can also be used for
other products that you may develop.

7.2.1 Federated identity

You have almost certainly used websites that offer the opportunity to
“Login with Google” or “Login with Facebook.” These sites rely on what is
called a “federated identity” approach, where an external service is used for
authentication.

The advantage of federated identity for users is that they have a single set of
credentials that are stored by a trusted identity service. Instead of logging into a
service directly, you provide your credentials to a known service that confirms
your identity to the authenticating service. You don’t have to keep track of
different user IDs and passwords. Because your credentials are stored in fewer
places, the chances of a security breach where these are revealed is reduced.

M07_SOME6349_01_GE_C07.indd 207 27/09/2020 14:05

208 Chapter 7 ■ Security and Privacy

Figure 7.5 is a simplified description of the sequence of actions in a feder-
ated identity system.

Consider a product that offers a “Login with Google” option. A user who
clicks on this is diverted to the Google identity service. This service validates
the user’s identity using their Google account credentials. It then returns a
token to the diverting site to confirm that the user is a registered Google user.
If the user is already logged into a Google service, such as Gmail, then the
identity is already registered and there is no need for the user to input any
further information.

There are two advantages of using federated identities for authentication:

1. You don’t have to maintain your own database of passwords and other
secret information. System attackers often try to gain access to this data-
base, so if you maintain your own, you have to take stringent security
precautions to protect it. Implementing and maintaining an authentica-
tion system are expensive processes for small product companies. Large
companies, such as Google and Facebook, have the resources and the
expertise to do this.

2. The identity provider may give additional information about users that
can be used to personalize your service or to target advertising at users.
Of course, when you set up a federated identity system with a major
provider, then you have to ask users whether they are willing to share
their information with you. There is no guarantee they will agree to this.

Figure 7.5 Federated identity

Service
Request

authentication
Divert request

Request credentials

Provide credentials

Return authentication
token

Authentication
response

User Trusted authenticator

M07_SOME6349_01_GE_C07.indd 208 27/09/2020 14:05

 7.2 ■ Authentication 209

Identity verification using Google or Facebook as a trusted service is
acceptable for consumer products that are aimed at individual customers. For
business products, you can still use federated identity, with authentication
based on the business’s own identity management system.

If you use a product such as Office 365, you can see how this works. You
identify yourself initially to Office 365 using your business email address.
The identity management system discovers the business domain from your
address and looks up the business’s own identity management server. You are
diverted to this server, where you input your business credentials, and a token
is then sent to the Office 365 system that validates your identity.

Some people dislike federated identity services because of privacy con-
cerns. User information has to be shared with the third-party identity ser-
vice as a condition of using the service. If Google is the identity service, it
therefore knows what software you are using. It can update the data that it
holds about you with this information to improve its targeting of personalized
advertisements.

There are various ways to implement federated authentication, but most
of the major companies that offer federated authentication services use the
OAuth protocol. This standard authentication protocol has been designed to
support distributed authentication and the return of authentication tokens to
the calling system.

However, OAuth tokens do not include information about the authenti-
cated user. They only indicate that access should be granted. This means
it is not possible to use OAuth authentication tokens to make decisions on
user privileges—for example, what resources of the system they should
have access to. To get around this problem, an authentication protocol called
 OpenID Connect has been developed that provides user information from the
authenticating system. Most of the major authentication services now use this,
except Facebook, which has developed its own protocol on top of OAuth.

7.2.2 Mobile device authentication

The ubiquity of mobile devices (tablets and phones) means that companies
that offer a cloud-based product usually offer users a mobile app to access
their service. You can, of course, use exactly the same approach to authentica-
tion on a mobile device as you do on a browser. This will probably annoy your
users, however, and dissuade them from using your app. Mobile keyboards are
fiddly and prone to errors; if you insist on strong passwords, as you should,
there’s a good chance that users will mistype them.

M07_SOME6349_01_GE_C07.indd 209 27/09/2020 14:05

210 Chapter 7 ■ Security and Privacy

As an alternative to using a login/password pair, a commonly used approach
to mobile authentication is to install an authentication token on the mobile
device. When the app starts, the token is sent to the service provider to identify
the user of the device. This approach to authentication is shown in Figure 7.6.

Users register through the app vendor’s website and create an account
where they define their authentication credentials. When they install the app,
users authenticate themselves using these authentication credentials. These
credentials are sent over a secure connection to the authentication server.
This server then issues an authentication token that is installed on the user’s
mobile device. Subsequently, when the app starts, it sends this token to the
authentication server to confirm the user’s identity. For added security, the
authentication token may expire after some period of time so that users have
to periodically re-authenticate themselves to the system.

A potential weakness in this approach is that if a device is stolen or lost,
then someone who is not the device owner can get access to your product.
You can guard against this by checking that the device owner has set up a
device passcode or biometric identification that should protect the device from
unauthorized access. Otherwise, you require the user to re-authenticate with
your app every time it starts up.

Figure 7.6 Mobile device authentication

Session
start

Send
auth token

Continue (Authentication accepted)

Get
credentials

Send
credentials

Continue

End
session

Check
credentials

Create
token

End
session

Token OK

Token rejected/No token

Token OK Too many
retries

Save
token

Credentials OK

Credentials rejected

Token rejected/
No token Credentials

OK

MOBILE DEVICE

AUTHENTICATION SERVER

Session
start

Check
token

Save
token

MOBILE DEVICE

AUTHENTICATION SERVER

M07_SOME6349_01_GE_C07.indd 210 27/09/2020 14:05

 7.3 ■ Authorization 211

Issuing individual users digital certificates and using certificate-based
authentication is a variant of token-based authentication where the token is
a digital certificate (see the Recommended Reading section). This is a more
secure approach than simple authentication tokens because certificates are
issued by trusted providers and their validity can be checked. The same cer-
tificate can be used to provide single sign-on across a range of applications.
There is a significant overhead in managing certificates, however. You have
to either do this yourself or outsource the management to a security service.

You must always encrypt authentication information when it is being sent
from the client device to the authentication server. You do this using an https
rather than an http connection between the client and the server. I explain
secure transmission in Section 7.4.

7.3 Authorization

Authentication involves a user proving their identity to a software system.
Authorization is a complementary process in which that identity is used to
control access to software system resources. For example, if you use a shared
folder on Dropbox, the folder’s owner may authorize you to read the contents
of that folder but not to add new files or overwrite files in the folder.

When a business wants to define the type of access that users get to
resources, this is based on an access control policy. This policy is a set of
rules that define what information (data and programs) is controlled, who has
access to that information, and the type of access that is allowed (Figure 7.7).

For example, an access control policy may specify that nurses and doctors
have access to all medical records stored on the system. Doctors may modify
information on a record, but nurses may only add new information. Patients
may read their own records and may issue a request for correction if they find
what they believe is an error.

Figure 7.7 Elements of an access control policy

Permissions

Users Groups

Resources

member-of

access
assigned-toassigned-tocontrol

M07_SOME6349_01_GE_C07.indd 211 27/09/2020 14:05

212 Chapter 7 ■ Security and Privacy

If you are developing a product for individual use, you probably don’t
need to include access control features. Your access control policy is simply
that the individual user is allowed to create, read, and modify all of their own
information. If you have a multiuser business system or share information in
individual accounts, however, then access control is essential.

Explicit access control policies are important for both legal and technical
reasons. Data protection rules limit access to personal data, and this must be
reflected in the defined access control policy. If this policy is incomplete or
does not conform to the data protection rules, then there may be subsequent
legal action in the event of a data breach. Technically, an access control policy
can be a starting point for setting up the access control scheme for a system.
For example, if the access control policy defines the access rights of students,
then when new students are registered, they all get these rights by default.

Access control lists (ACLs) are used in most file and database systems
to implement access control policies. ACLs are tables that link users with
resources and specify what those users are permitted to do. For example, for
this book I would like to be able to set up an ACL to a book file that allows
reviewers to read that file and annotate it with comments. However, they are
not allowed to edit the text or to delete the file.

If ACLs are based on individual permissions, then these lists can become
very large. However, you can dramatically cut their size by allocating users to
groups and then assigning permissions to the group (Figure 7.8). If you use a
hierarchy of groups, then you can add permissions or exclusions to subgroups
and individuals.

Figure 7.8 shows examples of ACLs in a university associated with
resources A, B, and C. Resource A is a public document that anyone can
read. However, it can only be created and edited by staff in the institution and
can only be deleted by system administrators. Resource B is an executable
program. Anyone can execute it, but only system administrators can create
and delete it. Resource C is a student information system. Administrative staff
can create, read, and edit records in the system. Teaching staff can read and
edit records of students in their department. Students can only read their own
record. To ensure that student information is retained, no one has permission
to delete student data.

Unless you have a very specialized product, it is not worth developing your
own access control system for authorization. Rather, you should use the ACL
mechanisms in the underlying file or database system. However, you may
decide to implement your own control panel for the ACL system that reflects
the data and file types used in your product. This makes it easier to set up and
revoke access permissions and reduces the chances of authorization errors.

M07_SOME6349_01_GE_C07.indd 212 27/09/2020 14:05

 7.4 ■ Encryption 213

Figure 7.8 Access control lists

A

B

C

D

Resource Access

...

User Permissions

All

Staff

Sysadmin

Read

Create, Edit

Delete

User Permissions

All

Sysadmin

Execute

Create, Delete

User

Admin

Teaching staff

Student

Create, Read, Edit

Permissions

Read, Edit

Read

if department = dept_id

if student = student_id

7.4 Encryption

Encryption is the process of making a document unreadable by applying an
algorithmic transformation to it. The encryption algorithm uses a secret key as
the basis of this transformation. You can decode the encrypted text by apply-
ing the reverse transformation. If you choose the right encryption algorithm
and secret key, then it is virtually impossible for anyone else to make the text
readable without the key.

This encryption and decryption process is shown in Figure 7.9.

Figure 7.9 Encryption and decryption

Secret
key

Decrypt
Plain
text

Encrypted
textEncryptPlain

text

Secret
key

M07_SOME6349_01_GE_C07.indd 213 27/09/2020 14:05

214 Chapter 7 ■ Security and Privacy

Modern encryption techniques enable you to encrypt data so that they are
practically uncrackable using currently available technology. However, history
has demonstrated that apparently strong encryption may be crackable when new
technology becomes available (Table 7.4). Quantum computers are particularly
suited to very fast decryption of text that is encrypted using current encryption
algorithms. If commercial quantum systems become available, we will have to
use a completely different approach to encryption on the Internet.

Encryption is a complex topic; most engineers, including me, are not
experts in the design and implementation of encryption systems. Conse-
quently, I don’t give advice on what encryption schemes to use, how to man-
age encryption keys, and so on. What I aim to do here is give an overview of
encryption and make you aware of what you have to think about when making
decisions about it.

7.4.1 Symmetric and asymmetric encryption

Symmetric encryption, illustrated in Figure 7.10, has been used for hun-
dreds of years. In a symmetric encryption scheme, the same encryption
key is used for both encoding and decoding the information that is to be
kept secret. If Alice and Bob wish to exchange a secret message, both
must have a copy of the encryption key. Alice encrypts the message with
this key. When Bob receives the message, he decodes it using the same
key to read its contents.

The fundamental problem with a symmetric encryption scheme is securely
sharing the encryption key. If Alice simply sends the key to Bob, an attacker
may intercept the message and gain access to the key. The attacker can then
decode all future secret communications.

During World War II, the German military used an encryption system based on an
electromechanical coding machine called Enigma. They believed it to be practically
uncrackable because of the number of combinations that would have to be tested to
break the code.

However, Alan Turing, a pioneering British computer scientist, designed two early
computers, one electro-mechanical (Bombe) and one electronic (Colossus), specifically to
crack the Enigma encryption. These computers could carry out thousands of operations
per second, and it became possible to decode a large percentage of encrypted German
messages. This was said to have saved thousands of Allied lives and to have hastened the
defeat of Nazi Germany by the Allies.

Table 7.4 Technology and encryption

M07_SOME6349_01_GE_C07.indd 214 27/09/2020 14:05

 7.4 ■ Encryption 215

Figure 7.10 Symmetric encryption

Encrypted text

Encryption key

Secret message

Encryption key

Alice Bob

Secret message

a7Dr6yYt9F...a7Dr6yYt9F...

encrypt decrypt

An alternative approach, called asymmetric encryption (Figure 7.11), does
not require secret keys to be shared. An asymmetric encryption scheme uses
different keys for encrypting and decrypting messages. Each user has a public
and a private key. Messages may be encrypted using either key but can only
be decrypted using the other key.

As the name suggests, public keys may be published and shared by the
key owner. Anyone can access and use a published public key. However, a
message can only be decrypted by the user’s private key, so is readable by
only the intended recipient. For example, in Figure 7.11, Alice encrypts a

Figure 7.11 Asymmetric encryption

Bob’s public key

Secret message

Bob’s private key

Alice Bob

Encrypted text Secret message

dr5ts3TR9dt
x4ztmRsYY...

hTr34BbfsDy
9r3g5HHt76...

encrypt decrypt

M07_SOME6349_01_GE_C07.indd 215 27/09/2020 14:05

216 Chapter 7 ■ Security and Privacy

secret message using Bob’s public key. Bob decrypts the message using his
private key, which only he knows. The message cannot be decrypted with
Bob’s public key.

Asymmetric encryption can also be used to authenticate the sender of
a message by encrypting it with a private key and decrypting it with the
corresponding public key. Let’s assume Alice wants to send a message to
Bob and she has a copy of his public key. However, she is not sure whether
or not the public key that she has for Bob is correct, and she is concerned
that the message may be sent to the wrong person. Figure 7.12 shows how
private/public key encryption can be used to verify Bob’s identity. Bob
uses his private key to encrypt a message and sends it to Alice. If Alice
can decrypt the message using Bob’s public key, then Alice has the cor-
rect key.

As there isn’t a secure key exchange problem, an obvious question is “Why
not always use asymmetric rather than symmetric encryption?” The reason is
that, for the same level of security (measured by the time required to crack the
code), asymmetric encryption takes about 1000 times longer than symmetric
encryption. This is proportional to the length of the text being encoded so,
in practice, asymmetric encryption is used only for encoding relatively short
messages.

Symmetric and asymmetric encryption can be used together. This is the
basis of the world’s most extensively used encryption scheme for exchang-
ing secure messages on the web. I use this as an example of how to combine
symmetric and asymmetric encryption.

Figure 7.12 Encryption for authentication

Bob’s private key

I am really
Bob

Bob’s public key

AliceBob

Encrypted text

dr5ts3TR9dt
x4ztmRsYY...

hTr34BbfsDy
9r3g5HHt76...

I am really
Bob

encrypt decrypt

M07_SOME6349_01_GE_C07.indd 216 27/09/2020 14:05

 7.4 ■ Encryption 217

7.4.2 TLS and digital certificates

The https protocol is a standard protocol for securely exchanging texts on the
web. Basically, it is the standard http protocol plus an encryption layer called TLS
(Transport Layer Security). TLS has replaced the earlier SSL (Secure Socket Layer)
protocol, which was found to be insecure. This encryption layer has two uses:

■■ to verify the identity of the web server;

■■ to encrypt communications so that they cannot be read by an attacker who
intercepts the messages between the client and the server.

TLS encryption depends on a digital certificate that is sent from the web server
to the client. Digital certificates are issued by a certificate authority (CA), which
is a trusted identity verification service. Organizations that buy a digital certifi-
cate have to provide information to the CA about their identity, and this identity
information is encoded in the digital certificate. Therefore, if a certificate is issued
by a recognized CA, the identity of the server can be trusted. Web browsers and
apps that use https include a list of trusted certificate providers.

Table 7.5 shows the information that is included in a digital certificate.

Certificate element Explanation

Subject information Information about the company or individual whose
website is being visited. Applicants apply for a
digital certificate from a certificate authority who
checks that the applicant is a valid organization.

Certificate authority information Information about the certificate authority (CA) who
has issued the certificate.

Certificate information Information about the certificate itself, including a
unique serial number and a validity period, defined
by start and end dates.

Digital signature The combination of all of the above data uniquely
identifies the digital certificate. The signature data
are encrypted with the CA’s private key to confirm
that the data are correct. The algorithm used to
generate the digital signature is also specified.

Public key information The public key of the CA is included along with
the key size and the encryption algorithm used.
The public key may be used to decrypt the digital
signature.

Table 7.5 Elements of digital certificates

M07_SOME6349_01_GE_C07.indd 217 27/09/2020 14:05

218 Chapter 7 ■ Security and Privacy

The CA encrypts the information in the certificate using their private key
to create a unique signature. This signature is included in the certificate along
with the public key of the CA. To check that the certificate is valid, you can
decrypt the signature using the CA’s public key. The decrypted information
should match the other information in the certificate. If not, the certificate has
been forged and should be rejected.

When a client and server wish to exchange encrypted information, they
communicate to set up a TLS connection. They then exchange messages, as
shown in Figure 7.13, to establish the encryption key that both the client and
the server will use.

Figure 7.13 Using symmetric and asymmetric encryption in TLS

CLIENT SERVER
Encryption methods

supported

Encryption method to be used

Prove your identity?

Generate
RS

Encrypt
RS

Compute
key

Hello

Get
certificate

RC is a large
random number

Check
Check certificate issuer
and validity and digital
signature on certificate

Generate
RC

RS is a large
random number

Digital certificate + encrypted RS

Encrypt
RC

Decrypt RS and encrypt
 RC using public key

from digital certificate Encrypted RC Decrypt
RC

Decrypt RC using
private key

Compute the
symmetric key

using RS and RC

Compute
key

Compute the
symmetric key
using RS and RCData encrypted using

symmetric key

Encrypt RS using
private key

Decrypt
RS

Hello

Verify

Exchange
data

End
session

End
session

Exchange
data

M07_SOME6349_01_GE_C07.indd 218 27/09/2020 14:05

 7.4 ■ Encryption 219

The digital certificate that the server sends to the client includes the server’s
public key. The server also generates a long random number, encrypts it using
its private key, and sends this to the client. The client can then decrypt this
using the server’s public key and, in turn, generates its own long random
number. It encrypts this number using the server’s public key and sends it to
the server, which decrypts the message using its private key. Both client and
server then have two long random numbers.

The agreed encryption method includes a way of generating an encryption
key from these numbers. The client and server independently compute the key
that will be used to encrypt subsequent messages using a symmetric approach.
All client—server traffic is then encrypted and decrypted using that computed
key. There is no need to exchange the key itself.

7.4.3 Data encryption

As a product provider, you inevitably store information about your users and,
for cloud-based products, user data. User information may include personal
information such as addresses, phone numbers, email addresses, and credit
card numbers. User data may include documents that the users have created
or business databases.

For example, say your product is a cloud-based system for labs that allows
them to store and process information on tests of new pharmaceuticals. The
database includes information about experiments, the participants in these
experiments, and the test results. Theft of these data may compromise the
privacy of the participants in the test, and disclosure of the test results may
affect the financial position of the testing company.

Encryption can be used to reduce the damage that may occur from data
theft. If information is encrypted, it is impossible, or very expensive, for
thieves to access and use the unencrypted data. Therefore, you should encrypt
user data whenever it is practicable to do so. The practicality of encryption
depends on the encryption context:

1. Data in transit The data are being moved from one computer to another.
Data in transit should always be encrypted. When transferring the data
over the Internet, you should always use the https rather than the http
protocol to ensure encryption.

2. Data at rest The data are being stored. If data are not being used, then the
files where the data are stored should be encrypted so that theft of these
files will not lead to disclosure of confidential information.

M07_SOME6349_01_GE_C07.indd 219 27/09/2020 14:05

220 Chapter 7 ■ Security and Privacy

3. Data in use The data are being actively processed. There are problems in
using encryption with data that are in use. Encrypting and decrypting the
data slow down the system response time. Furthermore, implementing a
general search mechanism with encrypted data is impossible because of
the difficulties in matching search terms with encrypted data.

Encryption of data is possible at four different levels in the system (Figure 7.14).
Generally, more protection is afforded at the higher levels in this stack, as the
data are decrypted for a shorter period of time.

Media-level encryption is where an entire disk is encrypted. This provides
some limited protection and can be used to protect the data on laptops and
portable media if they are lost or stolen. This level is not really relevant to
product developers.

File-level encryption involves encrypting entire files and is relevant if
you maintain some information in files rather than store everything in a
DBMS. Generally, this means you have to provide your own encryption
system for your system files. You should not trust the encryption used by
cloud providers, such as Dropbox, as they hold the keys and so can access
your data.

Most database management systems provide some support for encryption:

1. Database file encryption The files in which the database holds its data are
encrypted. When the DBMS requests data from a file, it is decrypted as
it is transferred to the system’s memory and encrypted when it is written
back to the file.

Figure 7.14 Encryption levels

The operating system encrypts disks when they
are unmounted and decrypts these disks when
they are remounted.

The operating system encrypts individual files
when they are closed and decrypts them when
they are reopened.

The DBMS may encrypt the entire database
when it is closed, with the database decrypted
when it is reopened. Alternatively, individual tables
or columns may be encrypted/decrypted.

The application decides what data should be
encrypted and decrypts that data immediately
before they are used.

Application

Database

Files

Media

M07_SOME6349_01_GE_C07.indd 220 27/09/2020 14:05

 7.4 ■ Encryption 221

2. “Column-level” encryption Specific columns in a relational database
system are encrypted. For example, if your database holds personal
information, you should encrypt the column that holds the user’s credit
card number. The column need only be decrypted when the number is
retrieved—for example, sent in a transaction to the credit card company.

Application-level encryption allows you, as a product developer, to
decide what and when data should be encrypted. You implement an encryp-
tion scheme within your product to encrypt and decrypt confidential data.
Each user of your product chooses a personal encryption key. The data are
encrypted in the application that generates or modifies the data rather than
relying on database encryption. Consequently, all stored data are always
encrypted. You should not store the encryption keys used.

Unfortunately, application-level encryption has several drawbacks:

1. As I said, most software engineers are not encryption experts. Implement-
ing a trustworthy encryption system is complex and expensive, and there
is a real possibility that you will make mistakes. This means your system
may not be as secure as you intended.

2. Encryption and decryption can significantly affect the performance of
your application. The time needed for encryption and decryption slows
down the system. Users may either reject your software or not use the
encryption feature.

3. In addition to encryption, you need to provide key management function-
ality, which I cover in the next section. Normally, this involves writing
extra code to integrate your application with a key management system.

If you decide to implement encryption in your application, crypto libraries
are available for most programming languages. For symmetric encryption, the
AES and Blowfish algorithms are very secure, but you should always develop
or bring in specialist expertise to help you choose the encryption approach
that is most appropriate for your product.

7.4.4 Key management

A general problem in any encryption system is key management. This is the
process of ensuring that encryption keys are securely generated, stored, and
accessed by authorized users. Businesses may have to manage tens of thousands

M07_SOME6349_01_GE_C07.indd 221 27/09/2020 14:05

222 Chapter 7 ■ Security and Privacy

of encryption keys. Because of the huge number of encryption keys and digital
certificates that have to be managed, it is impractical to do key management man-
ually. You need to use some kind of automated key management system (KMS).

Key management is important because if you get it wrong, unauthorized
users may be able to access your keys and so decrypt supposedly private data.
Even worse, if you lose encryption keys, then your encrypted data may be
permanently inaccessible.

A KMS is a specialized database designed to securely store and manage
encryption keys, digital certificates, and other confidential information. It may
provide functionality such as key generation—for example, a public key/pri-
vate key pair, access control that governs which people and applications can
access keys, and key transfer that securely transfers the keys from the KMS
to other network nodes.

Figure 7.15 shows the elements of an encryption system with access coor-
dinated using a KMS.

Businesses may be required by accounting and other regulations to keep
copies of all of their data for several years. For example, in the United King-
dom, tax and company data have to be maintained for at least six years, with
a longer retention period for some types of data. Data protection regulations
may require that these data be stored securely, so the data should be encrypted.

Figure 7.15 Using a KMS for encryption management

API

Calls

Keys

Stored encrypted
data

Application

Unencrypted data

Encryption
engine

Key store

Key management
system

API

M07_SOME6349_01_GE_C07.indd 222 27/09/2020 14:05

 7.5 ■ Privacy 223

To reduce the risks of a security breach, however, encryption keys should
be changed regularly. This means that archival data may be encrypted with
a different key from the current data in your system. Therefore, a KMS must
maintain multiple timestamped versions of keys so that system backups and
archives can be decrypted if required.

Some elements of KMS functionality may be provided as a standard OS
facility, such as Apple’s MacOS Keychain, but this is really only suitable for
personal or perhaps small business use. More complex KMS products and
services are available for large businesses. Amazon, Microsoft, and Google
provide KMSs that are specifically designed for cloud-based products.

7.5 Privacy

Privacy is a social concept that relates to the collection, dissemination, and
appropriate use of personal information held by a third party, such as a com-
pany or a hospital. The importance of privacy has changed over time, and
individuals have their own views on what degree of privacy is important. Cul-
ture and age also affect peoples’ views on what privacy means. For example:

■■ Some people may be willing to reveal information about their friends and
colleagues by uploading their contacts list to a software system; others do
not wish to do so.

■■ Younger people were early adopters of the first social networks, and many
of them seem to be less inhibited about sharing personal information on
these platforms than older people.

■■ In some countries, the level of income earned by an individual is seen as a
private matter; in others, all tax returns are openly published.

To maintain privacy, you need to have a secure system. However, security
and privacy are not the same thing. Facebook is a secure system with few
breaches of its security. There have been several privacy breaches, however,
because the features of the system prevent or make it difficult for users to
control who sees their personal information. In a medical information system,
if an external attacker gains access to the medical records, this is a security
failure. If the information in the system is used to send unwanted marketing
information about care homes, this is a privacy failure.

M07_SOME6349_01_GE_C07.indd 223 27/09/2020 14:05

224 Chapter 7 ■ Security and Privacy

People have different opinions on privacy, so it is impossible to establish
objective “privacy standards” based on a definition of “sensitive personal
information.” Few people would argue against maintaining the privacy of
health information. But what about location information—should this be pri-
vate or not? Knowing an individual’s location can enhance the user experi-
ence in many products. This information can be misused, however, so some
people don’t want to disclose their locations or won’t allow other companies
to use their location information.

In many countries, the right to individual privacy is protected by data pro-
tection laws. These laws limit the collection, dissemination, and use of per-
sonal data to the purposes for which they were collected. For example, a travel
insurance company may collect health information to assess their level of risk.
This is legal and permissible. However, it would not be legal for those com-
panies to use this information to target online advertising of health products,
unless their users had given specific permission for this.

Figure 7.16 shows the areas that may be covered by data protection laws.
These laws differ from country to country, and some country’s laws do not
cover all areas. The European Union’s data protection regulations (GDPR)
are among the most stringent in the world, and I base my discussion here on
these regulations. The legislation does not only apply to European companies.
The GDPR applies to all companies that hold data about EU citizens, irrespec-
tive of where these companies are based. Therefore, U.S., Indian, and Chinese
companies that allow EU citizens to create accounts must follow the GDPR.

Data protection laws typically refer to data subjects and data controllers.
The data subject is the individual whose data are being managed, and the data
controller is the manager of the data. The term “data owner” is ambiguous,
so it is not usually used. Data subjects have the right to access the stored data
and to correct mistakes. They must give their consent for the use of their data
and may ask for relevant data to be deleted. The data controller is responsible

Figure 7.16 Data protection laws

Data protection
laws

Responsibilities of
the data controller

Rights of the
data subject

Data storage
Data use
Security

Subject access

Data access
Error correction
Data deletion

Consent

M07_SOME6349_01_GE_C07.indd 224 27/09/2020 14:05

 7.5 ■ Privacy 225

for storing data securely in a location covered by data protection legislation.
The controller must provide subject access to the data and should use it only
for the purpose for which it was collected.

Data protection laws are based on a set of privacy principles that reflect
good privacy practice (Table 7.6).

There are three business reasons why you should pay attention to informa-
tion privacy:

1. If you are offering a product directly to consumers and you fail to con-
form to privacy regulations, then you may be subject to legal action by
product buyers or by a data regulator. If your conformance is weaker than
the protection offered by data protection regulations in some countries,
you cannot sell your product in these countries.

2. If your product is a business product, business customers require privacy
safeguards so that they are not put at risk of privacy violations and legal
action by users.

Data protection principle Explanation

Awareness and control Users of your product must be made aware of what
data are collected when they are using your product,
and must have control over the personal information
that you collect from them.

Purpose You must tell users why data are being collected and
you must not use those data for other purposes.

Consent You must always have the consent of a user before
you disclose their data to other people.

Data lifetime You must not keep data for longer than you need
to. If a user deletes an account, you must delete the
personal data associated with that account.

Secure storage You must maintain data securely so that it cannot be
tampered with or disclosed to unauthorized people.

Discovery and error correction You must allow users to find out what personal data
you store. You must provide a way for users to
correct errors in their personal data.

Location You must not store data in countries where weaker
data protection laws apply unless there is an explicit
agreement that the stronger data protection rules will
be upheld.

Table 7.6 Data protection principles

M07_SOME6349_01_GE_C07.indd 225 27/09/2020 14:05

226 Chapter 7 ■ Security and Privacy

3. If personal information is leaked or misused, even if this is not seen as a
violation of privacy regulations, your reputation may be seriously dam-
aged. Customers may stop using your product because of this.

The information that your software needs to collect depends on the func-
tionality of your product and on the business model you use. You should not
collect personal information that you do not need. Say you are developing a
service-oriented learning environment. You need to collect information about
the learners using the system, the services they use, the learning modules they
access, and their performance in assessments. You do not need information
on the ethnic background of users, their family circumstances, or what other
software they use.

To maintain the privacy of user data, you should establish a privacy policy that
defines how personal and sensitive information about users is collected, stored,
and managed. The general data protection principles, shown in Table 7.6, should
serve as a framework for the development of a privacy policy for your product.

Software products use data in different ways, so your privacy policy has
to define the personal data that you will collect and how you will use those
data. Product users should be able to review your privacy policy and change
their preferences regarding the information that you store. For example, users
should be able to state whether or not they want to receive marketing emails
from you. Your privacy policy is a legal document and it should be auditable
to check that it is consistent with the data protection laws in countries where
your software is sold.

Unfortunately, too many software companies bury their privacy policy in
a long “terms and conditions” document that, in practice, nobody reads. They
therefore get away with collecting user data that are not needed for their
product and using these data in ways that users would not expect. This is not
illegal, but it is unethical. The GDPR now requires software companies to
provide a summary of their privacy policy, written in plain language rather
than legal jargon.

Some software business models are based on providing free access to the
software and using the users’ data in some way to generate revenue. The data
may be used to target advertising at users or to provide services that are paid
for by other companies. If you use this model, you should make clear that you
collect data for this purpose and that your service depends on monetizing user
data in some way. You should always allow users to opt out of the use of their
data by other companies.

Privacy becomes particularly challenging when your product includes
sharing features that allow users to see what other users are doing and how

M07_SOME6349_01_GE_C07.indd 226 27/09/2020 14:05

 Key points 227

they use your product. Facebook is the prime example of this. There have
been many controversies over Facebook privacy and the ways in which the
company uses user data and provides privacy controls for users. Facebook
provides extensive privacy controls, but these are not all located in the same
place and they are sometimes difficult to find. Consequently, many Facebook
users inadvertently reveal personal information that they might prefer to keep
private.

If your product includes social network functionality so that users can share
information, you should ensure that users understand how to control the infor-
mation they share. Ideally, you should offer a “privacy dashboard,” where all
privacy controls are in one place and are clear to users. If the functionality
of your system depends on mining user information, you should make clear
to users that setting privacy controls may limit the functionality that your
system offers.

K E Y P O I N T S

■■ Security is a technical concept that relates to a software system’s ability to protect itself from
malicious attacks that may threaten its availability, the integrity of the system and its data,
and the theft of confidential information.

■■ Common types of attack on software products are injection attacks, cross-site scripting
attacks, session hijacking attacks, denial-of-service attacks, and brute force attacks.

■■ Authentication may be based on something a user knows, something a user has, or some
physical attribute of the user.

■■ Federated authentication involves devolving responsibility for authentication to a third party,
such as Facebook or Google, or to a business’s authentication service.

■■ Authorization involves controlling access to system resources based on the user’s
authenticated identity. Access control lists are the most commonly used mechanism to
implement authorization.

■■ Symmetric encryption involves encrypting and decrypting information using the same secret
key. Asymmetric encryption uses a key pair—a private key and a public key. Information
encrypted using the public key can only be decrypted using the private key.

■■ A major issue in symmetric encryption is key exchange. The TLS protocol, which is used to
secure web traffic, gets around this problem by using asymmetric encryption for transferring
the information required to generate a shared key.

M07_SOME6349_01_GE_C07.indd 227 27/09/2020 14:05

228 Chapter 7 ■ Security and Privacy

■■ If your product stores sensitive user data, you should encrypt that data when they are not in use.

■■ A key management system (KMS) stores encryption keys. Using a KMS is essential because
a business may have to manage thousands or even millions of keys and may have to decrypt
historical data that were encrypted using an obsolete encryption key.

■■ Privacy is a social concept that relates to how people feel about the release of their personal
information to others. Different countries and cultures have different ideas about what
information should and should not be private.

■■ Data protection laws have been passed in many countries to protect individual privacy. They
require companies that manage user data to store them securely, to ensure that they are not
used or sold without the permission of users, and to allow users to view and correct personal
data held by the system.

R E C O M M E N D E D R E A D I N G

Security in Computing, 5th edition

There are lots of general books on computer security that cover many of the same topics. All
give a reasonable overview of security fundamentals such as authentication, authorization, and
encryption. This is the book that I used when writing this chapter. (C. P. Pfleeger and S. L. Pfleeger.
Prentice Hall, 2015)

Schneier on Security

Bruce Schneier is a well-known security expert who writes in a very readable way. His blog covers
a wide range of general security topics. (B. Schneier, various dates)
https://www.schneier.com/

“The Basics of Web Application Security”

This is an excellent introduction from Martin Fowler’s team on possible security threats to web
applications and safeguards you can use to counter these threats. (C. Cairns and D. Somerfield, 2017)
https://martinfowler.com/articles/web-security-basics.html

“Excess XSS: A comprehensive tutorial on cross-site scripting”

This is a comprehensive tutorial on cross-site scripting attacks and how they can be prevented.
(J. Kallin and I. Lobo Valbuena, 2016)
https://excess-xss.com/

“Certificates and Authentication”

This easy-to-read introduction explains how certificates can be used in the authentication
process. (Redhat, undated)
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/8.0/html/
Deployment_Guide/Introduction_to_Public_Key_Cryptography-Certificates_and_Authentication.html

M07_SOME6349_01_GE_C07.indd 228 27/09/2020 14:05

https://www.schneier.com/
https://martinfowler.com/articles/web-security-basics.html
https://excess-xss.com/
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/8.0/html/Deployment_Guide/Introduction_to_Public_Key_Cryptography-Certificates_and_Authentication.html
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/8.0/html/Deployment_Guide/Introduction_to_Public_Key_Cryptography-Certificates_and_Authentication.html

 Exercises 229

“5 Common Encryption Algorithms and the Unbreakables of the Future”

Encryption is a complex topic and you need to choose an encryption algorithm carefully. This
article introduces five commonly used encryption algorithms, but you need to investigate them in
much more detail before making a choice. (StorageCraft, 2017)
https://www.storagecraft.com/blog/5-common-encryption-algorithms/

“What Is GDPR? The summary guide to GDPR compliance in the UK”

GDPR (General Data Protection Regulation) is a major change to data protection legislation
in Europe that came into force in 2018. This WIRED article is a good summary of general data
protection issues as well as a discussion of how GDPR has strengthened data protection.
(M. Burgess, 2018)
http://www.wired.co.uk/article/what-is-gdpr-uk-eu-legislation-compliance-summary-fines-2018

P R E S E N T A T I O N S , V I D E O S , A N D L I N K S

https://iansommerville.com/engineering-software-products/security-and-privacy

E X E R C I S E S

 7.1. Briefly describe the three main types of threat that have to be considered when planning
how to secure a software product against cyberattacks.

 7.2. Explain in your own words what you understand by an SQL injection attack. Explain how you
can use data validation to avoid such attacks.

 7.3. What do you think are the advantages and disadvantages of using a special-purpose device
rather than a mobile phone in two-factor authentication? (Hint: Think about the problems
of using a mobile phone as an authentication device.)

 7.4. Suggest, giving reasons, appropriate forms of authentication for the following products:

a. An e-learning product for teachers and students, funded by advertising, that allows
users to recommend videos and other learning material on a range of topics.

b. A personal finance app for mobile devices that can automatically transfer funds
between different accounts based on rules set up by the user.

c. A human resources product for businesses that helps manage the process of recruiting
new staff.

 7.5. What is the difference between symmetric and asymmetric encryption? Why do we need
both encryption methods?

 7.6. Explain why it is normally preferable to use a database’s built-in encryption support rather
than implement your own application-level encryption.

M07_SOME6349_01_GE_C07.indd 229 27/09/2020 14:05

https://www.storagecraft.com/blog/5-common-encryption-algorithms/
http://www.wired.co.uk/article/what-is-gdpr-uk-eu-legislation-compliance-summary-fines-2018
https://iansommerville.com/engineering-software-products/security-and-privacy

230 Chapter 7 ■ Security and Privacy

 7.7. Explain how encryption keys are securely exchanged in the TLS protocol.

 7.8. What are the problems in maintaining confidential information that, by law, has to be kept
for a number of years? How can a key management system help with these problems?

 7.9. Why is it difficult to establish a set of privacy standards that can be applied internationally
in software products?

 7.10. A Chinese e-commerce company decides to expand its business into the European Union.
It proposes to use a local cloud vendor for application server provision but to transfer user
information to servers in China for analysis. Explain why this information transfer might be
illegal, according to data protection legislation. (Hint: Look at the issues related to keeping
data anonymous.)

M07_SOME6349_01_GE_C07.indd 230 27/09/2020 14:05

Reliable Programming

To create a successful software product you must do more than provide a set
of useful features that meets customer needs. Customers have to be confident
that your product will not crash or lose information, and users have to be able
to learn to use the software quickly and without mistakes. In short, you need
to create a “high-quality” product that people want to use.

Saying that a program is high quality is a shorthand way of referring to a set
of desirable program attributes that make programs usable and practically use-
ful. I introduced the idea of non-functional quality attributes in Chapter 4 and
described them in Table 4.2. Figure 8.1 shows these software product quality
attributes.

Quality attributes fall into three groups:

1. Reliability attributes: reliability, availability, security, and resilience.
These all relate to the software’s ability to deliver its functionality as
expected by the user, without going wrong.

2. User experience attributes: responsiveness and usability. These relate to
the user’s interaction with your product.

3. Maintainability: a complex attribute related to how easy it is for develop-
ers to make changes to the program to correct bugs and add new features.

Sometimes these attributes are mutually supportive, and sometimes they
are opposing. For example, if you improve the security of a program by vali-
dating all inputs, you also improve its reliability. Because validation involves
additional checks, however, it can slow down your program and reduce its

8

M08_SOME6349_01_GE_C08.indd 231 30/09/2020 15:51

232 Chapter 8 ■ Reliable Programming

responsiveness. Improving security by adding extra authentication levels also
affects a program’s usability because users have to remember and input more
information before they can start doing useful work.

I focus here on techniques that help improve the overall reliability of a
program, where I use the term “reliability” to cover reliability, availability,
security and resilience. Usability and responsiveness are critical attributes in
practice. However, they are subjective attributes that differ for every program,
depending on its application domain and its market. It is therefore difficult to
provide product-independent guidance on how best to achieve responsiveness
and usability.

Maintainability depends on the understandability of a program and its
structure. To be maintainable, a program has to be composed of well-written,
replaceable, testable units. Most techniques that improve reliability also con-
tribute to improving maintainability.

Specialized techniques have been developed for achieving reliability
in critical software systems. These are systems whose failure may lead to
human injury or death or to significant environmental or economic damage.
These techniques include formal specification and verification of programs
and the use of reliability architectures, which include redundant compo-
nents. The system can automatically switch to a backup component in the
event of failure.

Figure 8.1 Product quality attributes

Reliability

Security

MaintainabilityUsability

Responsiveness

Product quality
attributes

Availability

Resilience

M08_SOME6349_01_GE_C08.indd 232 30/09/2020 15:51

These techniques are too expensive and time-consuming for software prod-
uct development. However, three simpler, low-cost techniques for improving
product reliability can be applied in any software company:

1. Fault avoidance You should program in such a way that you avoid intro-
ducing faults into your program.

2. Input validation You should define the expected format for user inputs
and validate that all inputs conform to that format.

3. Failure management You should implement your software so that pro-
gram failures have minimal impact on product users.

Programming for fault avoidance means that you use a programming style
that reduces the chances of making mistakes that introduce faults into your
program. Your programs should be easy to read so that readers can easily
understand the code. You should minimize the use of programming language
constructs that are error-prone. You should change and improve (refactor)
your program to make it more readable and to remove obscure code. You
should reuse trusted code and should program using well-understood, tried
and tested concepts, such as design patterns.

In Chapter 7, I discussed the importance of input validation in avoiding
several kinds of security threat to a system. Input validation, where you check
that user inputs are as expected, is also important for reliability. By trapping
invalid inputs, you ensure that incorrect data are not processed or entered into
the system database.

However, you can’t simply rely on fault avoidance. All programmers make
mistakes, so you should assume that there will always be residual faults in
your program. These faults may not cause problems for most users, but some-
times they lead to software failures. Most users now accept that things will
go wrong and will tolerate failures so long as they do not have to redo work.
Therefore, you should anticipate the possibility of failure in your program and
include recovery features that allow users to restart with minimal disruption.

8.1 Fault avoidance

Faults in a program are a consequence of programming errors—when pro-
grammers make mistakes and introduce incorrect code. If the erroneous
code is executed, the program fails in some way. An incorrect output may

 8.1 ■ Fault avoidance 233

M08_SOME6349_01_GE_C08.indd 233 30/09/2020 15:51

234 Chapter 8 ■ Reliable Programming

be produced, the program may not terminate, or the program might crash and
not continue execution. For example, a programmer may forget to increment
a variable in a loop, with the consequence that the loop never terminates.

Therefore, to improve the reliability of your program, you should program
in a way that minimizes the number of faults in the program. You can do this
by testing your program to reveal faults and then changing the code to remove
these faults. However, if you can, it is better to minimize programming errors
that lead to program faults and subsequent execution failures. This is called
fault avoidance.

Figure 8.2 shows three underlying causes of program errors. Let’s look at
examples of each of these types of error:

1. Imagine you are implementing a product to help businesses manage travel
expenses. If you don’t understand the tax laws that govern expenses pay-
ments, then you will inevitably make mistakes when implementing your
product (Problem error).

2. Say you are implementing a cataloging system for museums and art gal-
leries. Because you have experience with MySQL, you decide to use a
relational database in this system. Because of the diversity of objects in
museums, however, this involves creating a complex database schema.
Because of the complexity, you are liable to make mistakes in fitting object
descriptions into this schema. If you had chosen a NoSQL database, such
as MongoDB, this could perhaps have been avoided (Technology error).

Figure 8.2 Underlying causes of program errors

Technology

Programming language,
libraries, database, IDE, etc.

Program

Programmers make mistakes
because they don’t properly
understand the problem or the
application domain.

Programmers make mistakes
because they use unsuitable
technology or they don’t
properly understand the
technologies used.

Programmers make mistakes because
they make simple slips or they do not
completely understand how multiple
program components work together
and change the program’s state.

Problem

M08_SOME6349_01_GE_C08.indd 234 30/09/2020 15:51

 8.1 ■ Fault avoidance 235

3. We all make simple slips when programming, such as misspelling an
identifier name. These can often be detected by a compiler or other tools.
However, these tools can’t pick up some types of slip, such as out-by-1
errors in a for-loop. For example, in many languages, the characters in a
string are addressed from 0, with the final character being at length (str)-1.
If you write code that starts at position 1 rather than 0, then you will not
process the first character in the string (Program error).

The underlying root cause of many program errors is complexity. As I
explained in Chapter 4, the more complex a program, the more difficult it is
to understand. If you don’t completely understand a program, you are more
likely to make mistakes when changing it or adding new code. You should
therefore program in a way that minimizes complexity.

8.1.1 Program complexity

Complexity is related to the number of relationships between elements in
a program and the type and nature of these relationships (Figure 8.3). The
number of relationships between entities is called the coupling. The higher
the coupling, the more complex the system. The shaded node in Figure 8.3 has
a relatively high coupling because it has relationships with five other nodes.

Figure 8.3 Software complexity

The shaded node interacts in some ways with
the linked nodes shown by the dotted lines.

M08_SOME6349_01_GE_C08.indd 235 30/09/2020 15:51

236 Chapter 8 ■ Reliable Programming

Complexity is also affected by the type of relationship. A static relationship
is one that is stable and does not depend on program execution. For example,
whether or not one component is part of another component is a static rela-
tionship. Dynamic relationships, which change over time, are more complex
than static relationships. An example of a dynamic relationship is the “calls”
relationship between functions. This relationship changes depending on the
pattern of program execution.

Complexity leads to programming errors because of the way our brains
work. We use our short-term memory to work things out. We populate this
with information from our senses and from longer-term memory, which we
use to remember things for a longer time.

Short-term memory is limited in size, however, so it can only handle
between four and seven discrete units of information. For more units, we need
to transfer information between short-term memory and longer-term memory.
This transfer slows down understanding and is potentially prone to errors.
We may not transfer all of the necessary information, or we may transfer the
wrong information. If we keep things simple, we can retain more information
in short-term memory and so reduce the chances of errors.

Several metrics have been devised to measure program complexity, such as
McCabe’s cyclomatic complexity metric and SLOC, the number of lines of source
code. Tools are available to analyze programs and compute these metrics. I am
skeptical of these metrics, however, because code complexity also depends on
how you organize your data. Code analysis tools do not take this into account. I
don’t think that trying to measure complexity using these metrics is worthwhile.

Program complexity is, to some extent, under the control of the program-
mer. However, the problem domain has its own complexity, and this may be
difficult to simplify. For example, tax laws in all countries are complex, so
this type of complexity is unavoidable if you are developing a product to help
users with their tax returns. Similarly, if you are using complex tools, you
may make mistakes because you don’t understand the interactions between
components of the tool.

Sometimes you can reduce problem complexity by redefining and simplify-
ing the problem. This is impossible for some problems, however, and you have
to deal with their inherent complexity. In those situations, you should write your
program using structures and names that reflect how the problem is described
and documented. As your understanding of the problem evolves, it is then easier
to make changes to your program without introducing new faults.

This is one reason programming guidelines suggest that you use readable
names in your program. For example, look at the following code segments that

M08_SOME6349_01_GE_C08.indd 236 30/09/2020 15:51

 8.1 ■ Fault avoidance 237

calculate the computation of a student’s overall grade. The grades are com-
puted from the grades allocated to three assignments and a final examination:

Segment 1

G = A1*0.1 + A2*0.1 +A3*0.2 + Ex *0.6

#Segment 2

WrittenAssignmentWeight = 0.1

PracticalAssignmentWeight = 0.2

ExamWeight = 0.6

Grade = (Assignment1Mark + Assignment2Mark) * WrittenAssignmentWeight +

 ProjectMark * PracticalAssignmentWeight + ExamMark * ExamWeight

Segment 1 uses abbreviated names and is obviously faster to write. However,
its meaning isn’t clear. In contrast, it is immediately obvious from the code in
Segment 2 what is being calculated and the elements that make up the final grade.

Readability and other programming guidelines, such as indentation guide-
lines, are important for fault avoidance because they reduce the “reading com-
plexity” of a program. Reading complexity reflects how hard the program is
to read and understand. There are various good practice guidelines, such as
using readable names, indenting code, and naming constant values. I assume
you already know about good programming practice, so I don’t discuss these
guidelines here.

In addition to reading complexity, you have to consider three other types
of program complexity:

1. Structural complexity This reflects the number and types of relationships
between the structures (classes, objects, methods, or functions) in your
program.

2. Data complexity This reflects the representations of data used and the
relationships between the data elements in your program.

3. Decision complexity This reflects the complexity of the decisions in your
program.

To avoid introducing faults into your code, you should program so that, as
far as possible, you minimize each of these types of complexity. There are no

M08_SOME6349_01_GE_C08.indd 237 30/09/2020 15:51

238 Chapter 8 ■ Reliable Programming

hard and fast rules about how to do this, and sometimes reducing one type of
complexity leads to an increase in some other type. However, following the
good practice guidelines shown in Table 8.1 helps to reduce program complex-
ity and the number of faults in a program. There’s lots of information on these
guidelines, as well as other good practice guidelines available on the web.

I don’t have space here to describe all these guidelines in detail. To illus-
trate the general ideas, though, I discuss three guidelines that are relevant for
most object-oriented programs:

■■ Ensure that every class has a single responsibility.

■■ Avoid deeply nested conditional statements.

■■ Avoid deep inheritance hierarchies.

Ensure that every class has a single responsibility Since the advent of
structured programming in the 1970s, it has been accepted that program units
should do only one thing. Bob Martin, in his book Clean Code,1 articulated
this “single responsibility principle” for object-oriented development. He
argued that you should design classes so that there is only a single reason to
change a class. If you adopt this approach, your classes will be smaller and
more cohesive. They will be less complex and easier to understand and change.

1Robert C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship (Boston: Prentice
Hall, 2008).

Type Guideline

Structural complexity Functions should do one thing and one thing only.
Functions should never have side effects.
Every class should have a single responsibility.
Minimize the depth of inheritance hierarchies.
Avoid multiple inheritance.
Avoid threads (parallelism) unless absolutely necessary.

Data complexity Define interfaces for all abstractions.
Define abstract data types.
Avoid using floating-point numbers.
Never use data aliases.

Decision complexity Avoid deeply nested conditional statements.
Avoid complex conditional expressions.

Table 8.1 Complexity reduction guidelines

M08_SOME6349_01_GE_C08.indd 238 30/09/2020 15:51

 8.1 ■ Fault avoidance 239

Martin’s notion of “a single reason to change” is, I think, quite hard to
understand. However, in a blog post2 he explains the single responsibility
principle in a much better way:

Gather together the things that change for the same reasons. Separate
those things that change for different reasons.

To illustrate this principle, Figure 8.4 shows two versions of a class dia-
gram for a class called DeviceInventory, which could be part of a business
product for inventory management. This class keeps track of who uses the
business’s laptops, tablets, and phones.

The original version of the class is shown in Figure 8.4(a), where there are
methods to update the attributes of the class. Let’s assume a product manager
suggests that businesses should be able to print a report of device assign-
ments. One way of doing this is to add a printInventory method, as shown in
Figure 8.4(b).

This change breaks the single responsibility principle because it adds
an additional “reason to change” the class. Without the printInventory
method, the reason to change the class is that there has been some fun-
damental change in the inventory, such as recording who is using their
personal phone for business purposes. If you add a print method, however,

2https://8thlight.com/blog/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html

Figure 8.4 The DeviceInventory class

DeviceInventory

laptops
tablets
phones
device_assignment

addDevice
removeDevice
assignDevice
unassignDevice
getDeviceAssignment

DeviceInventory

laptops
tablets
phones
device_assignment

addDevice
removeDevice
assignDevice
unassignDevice
getDeviceAssignment
printInventory

(a) (b)

M08_SOME6349_01_GE_C08.indd 239 30/09/2020 15:51

https://8thlight.com/blog/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html

240 Chapter 8 ■ Reliable Programming

you are associating another data type (a report) with the class. Another
reason for changing this class might then be to change the format of the
printed report.

Instead of adding a printInventory method to DeviceInventory, it is
better to add a new class to represent the printed report, as shown in
Figure 8.5.

The benefits of following the single responsibility principle are not obvi-
ous in such a small illustrative example, but they are real when you have
much larger classes. Unfortunately, modifying an existing class when a
change is required is sometimes the quickest way of implementing that
change. However, if you do so, your code becomes more and more complex.
Consequently, as part of a refactoring process (discussed in Section 8.1.3)
you should regularly reorganize your classes so that each has a single
responsibility.

Avoid deeply nested conditional statements Deeply nested conditional
(if) statements are used when you need to identify which of a possible set of
choices is to be made. For example, the function “agecheck” in Program 8.1
is a short Python function used to calculate an age multiplier for insurance
premiums. The insurance company’s data suggest that the age and experi-
ence of drivers affect the chances of them having an accident, so premiums
are adjusted to take this into account. It is good practice to name constants
rather than use absolute numbers, so Program 8.1 names all constants that
are used.

Figure 8.5 The DeviceInventory and InventoryReport classes

DeviceInventory

laptops
tablets
phones
device_assignment

addDevice
removeDevice
assignDevice
unassignDevice
getDeviceAssignment

InventoryReport

report_data
report_format

updateData
updateFormat
print

M08_SOME6349_01_GE_C08.indd 240 30/09/2020 15:51

 8.1 ■ Fault avoidance 241

Program 8.1 Deeply nested if-then-else statements

YOUNG_DRIVER_AGE_LIMIT = 25

OLDER_DRIVER_AGE = 70

ELDERLY_DRIVER_AGE = 80

YOUNG_DRIVER_PREMIUM_MULTIPLIER = 2

OLDER_DRIVER_PREMIUM_MULTIPLIER = 1.5

ELDERLY_DRIVER_PREMIUM_MULTIPLIER = 2

YOUNG_DRIVER_EXPERIENCE_MULTIPLIER = 2

NO_MULTIPLIER = 1

YOUNG_DRIVER_EXPERIENCE = 2

OLDER_DRIVER_EXPERIENCE = 5

def agecheck (age, experience):

 # Assigns a premium multiplier depending on the age and experience of the driver

 multiplier = NO_MULTIPLIER

 if age <= YOUNG_DRIVER_AGE_LIMIT:

 if experience <= YOUNG_DRIVER_EXPERIENCE:

 multiplier = YOUNG_DRIVER_PREMIUM_MULTIPLIER *

 YOUNG_DRIVER_EXPERIENCE_MULTIPLIER

 else:

 multiplier = YOUNG_DRIVER_PREMIUM_MULTIPLIER

 else:

 if age > OLDER_DRIVER_AGE and age <= ELDERLY_DRIVER_AGE:

 if experience <= OLDER_DRIVER_EXPERIENCE:

 multiplier = OLDER_DRIVER_PREMIUM_MULTIPLIER

 else:

 multiplier = NO_MULTIPLIER

 else:

 if age > ELDERLY_DRIVER_AGE:

 multiplier = ELDERLY_DRIVER_PREMIUM_MULTIPLIER

 return multiplier

With deeply nested if statements, you have to trace the logic to see what
the premium multiplier should be. However, if you use guards, with multiple
returns, the conditions and their associated actions are clear (Program 8.2). A

M08_SOME6349_01_GE_C08.indd 241 30/09/2020 15:51

242 Chapter 8 ■ Reliable Programming

guard is a conditional expression placed in front of the code to be executed. It
“guards” that code, as the expression must be true for the code to be executed. It
is therefore easier to see the conditions under which the code segment will run.

You can implement guarded selections by using a switch statement (some-
times called a case statement) in Java or C++. Python does not have a switch
statement, so you have to simulate it in some way. I think that a switch state-
ment makes for more readable code and that Python’s language designers
have made a mistake in leaving this out.

Avoid deep inheritance hierarchies One innovation in object-oriented pro-
gramming was the idea of inheritance. The attributes and methods of a class,
such as RoadVehicle, can be inherited by subclasses, such as Truck, Car, and
MotorBike. This means there is no need to re-declare these attributes and
methods in a subclass. When changes are made, they apply to all subclasses
in the inheritance hierarchy.

Inheritance appears, in principle, to be an effective and efficient way of
reusing code and making changes that affect all subclasses. However, inheri-
tance increases the structural complexity of code, as it increases the coupling
of subclasses. For example, Figure 8.6 shows part of a four-level inheritance
hierarchy that could be defined for staff in a hospital.

The problem with deep inheritance is that if you want to make changes to a
class, you have to look at all of its superclasses to see where it is best to make

Program 8.2 Using guards to make a selection

def agecheck_with_guards (age, experience):

 if age <= YOUNG_DRIVER_AGE_LIMIT and experience <=

YOUNG_DRIVER_EXPERIENCE:

 return YOUNG_DRIVER_PREMIUM_MULTIPLIER *

 YOUNG_DRIVER_EXPERIENCE_MULTIPLIER

 if age <= YOUNG_DRIVER_AGE_LIMIT:

 return YOUNG_DRIVER_PREMIUM_MULTIPLIER

 if (age > OLDER_DRIVER_AGE and age <= ELDERLY_DRIVER_AGE) and experience <=

 OLDER_DRIVER_EXPERIENCE:

 return OLDER_DRIVER_PREMIUM_MULTIPLIER

 if age > ELDERLY_DRIVER_AGE:

 return ELDERLY_DRIVER_PREMIUM_MULTIPLIER

 return NO_MULTIPLIER

M08_SOME6349_01_GE_C08.indd 242 30/09/2020 15:51

 8.1 ■ Fault avoidance 243

Figure 8.6 Part of the inheritance hierarchy for hospital staff

Hospital staff

Clinical staffParamedics Scientists Admin staffAncillary staff

Doctor PhysiotherapistNurse

Midwife Ward nurse Nurse
manager

Technicians

the change. You also have to look at all of the related subclasses to check that
the change does not have unwanted consequences. It’s easy to make mistakes
when you are doing this analysis and introduce faults into your program.

A general problem with trying to reduce complexity in your program is
that the complexity is sometimes “essential complexity” that comes from the
application domain of your product. For example, hospitals have many differ-
ent types of staff, as shown in Figure 8.6. If you simplify the inheritance hier-
archy, this may involve introducing conditional statements within methods to
distinguish between different types of staff. For example, you can remove the
lowest level in the hierarchy in Figure 8.6 by having a single Nurse type, but
you then have to introduce guards when programming. For example:

if NurseType = Midwife:

 do_something ()

elsif NurseType = WardNurse:

 do_something_else ()

else:

 do_another_thing ()

These guards increase the decision complexity, so you are trading off struc-
tural complexity for decision complexity. I think this is preferable, however,
as decision complexity is localized (everything is in one place) and is usually
easier to understand.

M08_SOME6349_01_GE_C08.indd 243 30/09/2020 15:51

244 Chapter 8 ■ Reliable Programming

8.1.2 Design patterns

An effective way to avoid faults in your code is to reuse working software.
Existing software, often in libraries, has usually been extensively tested and
used in other applications, so many of the bugs have been discovered and
fixed. However, you must also test the software you reuse in the context of
your product to make sure that it really meets your needs. Your product may
use the software in a different way from other applications. Although the
reused code may have been extensively tested, you cannot be sure that the
testing has covered your type of use.

Code reuse is not always possible as it may be too expensive to adapt code
for use in your product. Another type of reuse, which avoids these problems,
is to reuse concepts and ideas that have been tried and tested in other sys-
tems. Design patterns, first proposed in the 1980s, are an example of this type
of reuse. Patterns are a way of describing good practice in object-oriented
programming. Using design patterns contributes to fault avoidance because
patterns describe reliable solutions to common problems. You don’t have to
discover your own solutions through a process of trial and error.

I think the definition of a design pattern in Wikipedia3 is a good one:

A general reusable solution to a commonly occurring problem within a
given context in software design.

Design patterns are object-oriented and describe solutions in terms of
objects and classes. They are not off-the-shelf solutions that can be directly
expressed as code in an object-oriented language. They describe the structure
of a problem solution that has to be adapted to suit your application and the
programming language you are using.

Two fundamental programming principles are the basis for most design
patterns:

1. Separation of concerns Each abstraction in the program (class, method, etc.)
should address a separate concern, and all aspects of that concern should be
covered there. For example, if authentication is a concern in your program,
then everything to do with authentication should be in one place, rather
than distributed throughout your code. This principle is closely related to
the single responsibility guideline that I explained in the previous section.

3https://en.wikipedia.org/wiki/Software_design_pattern

M08_SOME6349_01_GE_C08.indd 244 30/09/2020 15:51

https://en.wikipedia.org/wiki/Software_design_pattern

 8.1 ■ Fault avoidance 245

2. Separation of the “what” from the “how” If a program component pro-
vides a particular service, you should make available only the information
that is required to use that service (the “what”). The implementation of the
service (the “how”) should be of no interest to service users. This reflects
the complexity reduction guideline, shown in Table 8.1, which suggests
that you define separate interfaces for all abstractions.

If you follow these principles, then your code will be less complex and,
consequently, contain fewer faults. Complexity increases the chances that you
will make mistakes and introduce bugs into your program.

Patterns have been developed in several different areas, but the best-known
patterns are those developed by the so-called Gang of Four in their book
Design Patterns: Elements of Reusable Object-Oriented Software.4 They clas-
sify patterns into three types:

1. Creational patterns are concerned with class and object creation. They
define ways of instantiating and initializing objects and classes that are
more abstract than the basic class and object creation mechanisms defined
in a programming language.

2. Structural patterns are concerned with class and object composition.
Structural design patterns are a description of how classes and objects
may be combined to create larger structures.

3. Behavioral patterns are concerned with class and object communication.
They show how objects interact by exchanging messages, the activities in
a process, and how these are distributed among the participating objects.

Table 8.2 is a list of examples of creational, structural, and behavioral
patterns.

Let’s assume you are implementing a product in which you want to give the
user the ability to create multiple views of some dynamic data object. Users
can interact with any of the views, and the changes that are made should be
immediately reflected in all other open views. For example, if you are imple-
menting a product that’s aimed at people interested in family history, you
may provide both a list view and a family tree view of the user’s ancestors
(Figure 8.7).

4E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software (Reading, MA: Addison-Wesley, 1995).

M08_SOME6349_01_GE_C08.indd 245 30/09/2020 15:51

246 Chapter 8 ■ Reliable Programming

The challenge when dealing with multiple data views is to make sure that
all views are updated when changes are made. The Observer pattern shown in
Table 8.3 documents a good way of solving this common problem.

The Observer pattern is an example of a behavioral design pattern. This pat-
tern is the basis of the most widespread architecture for web-based systems:
the model-view-controller (MVC) architecture that I introduced in Chapter 4.

Pattern name Type Description

Factory Creational Used to create objects when slightly-different
variants of the object may be created.

Prototype Creational Used to create an object clone—that is, a new
object with exactly the same attribute values
as the object being cloned.

Facade Structural Used to match semantically compatible
interfaces of different classes.

Facade Structural Used to provide a single interface to a group
of classes in which each class implements
some functionality accessed through the
interface.

Mediator Behavioral Used to reduce the number of direct
interactions between objects. All object
communications are handled through the
mediator.

State Behavioral Used to implement a state machine in which
an object changes its behavior when its
internal state changes.

Table 8.2 Examples of creational, structural, and behavioral patterns

Figure 8.7 List view and tree view of ancestors

List view Tree view

Family history data

M08_SOME6349_01_GE_C08.indd 246 30/09/2020 15:51

 8.1 ■ Fault avoidance 247

Element Description

Name Observer

Description This pattern separates the display of an object from the object
itself. There may be multiple displays associated with the object.
When one display is changed, all others are notified and take
action to update themselves.

Problem Many applications present multiple views (displays) of the same
data with the requirement that all views must be updated when
any one view is changed. You may also wish to add new views
without the object whose state is being displayed knowing about
the new view or how the information is presented.

Solution The state to be displayed (sometimes called the Model) is
maintained in a Subject class that includes methods to add and
remove observers and to get and set the state of the Model. An
observer is created for each display and registers with the Subject.
When an observer uses the set method to change the state, the
Subject notifies all other Observers. They then use the Subject’s
getState() method to update their local copy of the state and
so change their display. Adding a new display simply involves
notifying the Subject that a new display has been created.

Implementation This pattern is implemented using abstract and concrete classes.
The abstract Subject class includes methods to register and
deregister observers and to notify all observers that a change has
been made. The abstract Observer class includes a method to
update the local state of each observer. Each Observer subclass
implements these methods and is responsible for managing its
own display. When notifications of a change are received, the
Observer subclasses access the model using the getState()
method to retrieve the changed information.

Things to consider The Subject does not know how the Model is displayed so cannot
organize its data to optimize the display performance. If a display
update fails, the Subject does not know that the update has been
unsuccessful.

Table 8.3 The Observer pattern

This architecture separates the system state (the model) from its presentation
(the views). The controller is responsible for managing the views as the state
changes.

Design patterns are usually documented in the stylized way shown in Table 8.3,
including:

■■ a meaningful name for the pattern and a brief description of what it does;

■■ a description of the problem it solves;

M08_SOME6349_01_GE_C08.indd 247 30/09/2020 15:51

248 Chapter 8 ■ Reliable Programming

■■ a description of the solution and its implementation;

■■ the consequences and trade-offs of using the pattern and other issues you
should consider.

The implementation section is usually more detailed than in Table 8.3,
with diagrams defining the abstract and concrete classes that implement the
pattern. Abstract classes define the method names for accessing the model
without an associated implementation. These methods are implemented in
lower-level concrete classes. I leave out this detailed implementation infor-
mation to save space.

Tables 8.4 and 8.5 are, respectively, brief descriptions of creational and
structural design patterns. You might use the Prototype pattern when you
need to initialize a group of objects in a similar way. For example, if you have
recommender system, you may want to create similar objects to represent the
things that you are recommending to users.

Element Description

Name Prototype

Description Given an existing object, this pattern creates (clones) a new
object, which is an exact copy of an existing object; that is, the
attributes in both objects have the same values. It is used as an
alternative to the normal method of object construction.

Problem This pattern is used when you need to instantiate new classes at
run time depending on some user input. It is also used when the
instances of a class can have only one of several state variations.

Solution The Prototype class includes a set of subclasses, with each of
these subclasses encapsulating an object that is to be cloned.
Each subclass provides an implementation of the clone method
in the Prototype class. When a new clone is required, the clone
method of the Prototype class is used to create an exact copy of
the cloneable object.

Implementation The Prototype class includes an abstract method clone() and
maintains a registry of cloneable objects. Each of these must
implement its own clone() method. When a clone is required,
the client calls the clone() method of Prototype with a parameter
indicating what type of object is to be cloned.

Things to consider Every subclass of Prototype (i.e., the things being cloned) must
implement a clone method. This can be difficult if the object being
cloned includes other objects that don’t support copying or that
include complex cross-references.

Table 8.4 The Prototype pattern

M08_SOME6349_01_GE_C08.indd 248 30/09/2020 15:51

 8.1 ■ Fault avoidance 249

You use the Facade pattern when you have a set of objects that offer a range
of related functionality, but you do not need to access all of that functionality.
By defining a facade, you limit the possible interactions with these objects
and so reduce the overall complexity of the interaction.

I don’t have space to describe all the design patterns defined by the
Gang of Four. Many pattern tutorials are available on the web, and I rec-
ommend that you look at them to understand the details of programming
with patterns.

Once you have some experience using patterns, they can become abstract
building blocks and you can use them as you are developing code. If you have
a prototype implementation of your product, this can be used to identify code
that can be encapsulated in patterns when you rewrite your system.

Element Description

Name Facade

Description A complex package or library might have many different objects
and methods that are used in different ways. The Facade pattern
provides a simple interface to the more complex underlying library
or package.

Problem As functionality is added to a system, the number of objects in
that system grows, either directly or by including libraries in the
system. Component functionality may be implemented by using
several other objects, so that there is a tight coupling between the
component functionality and the underlying objects. The resulting
code is often complex and hard to understand and change.

Solution A Facade class provides a simple interface to the set of classes
used to implement an aspect of the system’s functionality and so
hides complexity from the user of that functionality. For example,
say initializing a system involves using classes A, B, C, and D.
Instead of accessing these objects directly, an initialization facade
would provide a single initialize() method that hides classes A,
B, C, and D and simplifies initialization. Multiple facades may be
implemented as interfaces to subsets of the functionality provided
by libraries or packages.

Implementation A Facade class is created that includes the required interface
methods. It accesses the underlying objects directly.

Things to consider Implementing a facade hides the underlying complexity, but it
does not prohibit clients from accessing that functionality directly.
You could therefore end up with a system where the same
functionality is accessed in different ways. Accessing functionality
without going through the Facade should be discouraged, as it
adds complexity to the software.

Table 8.5 The Facade pattern

M08_SOME6349_01_GE_C08.indd 249 30/09/2020 15:51

250 Chapter 8 ■ Reliable Programming

Sometimes it makes sense to start programming with patterns, but at other
times a simpler, more direct implementation is a better initial solution. How-
ever, as you add more and more code to your system, the complexity of the
implementation increases. This is an indication that you need to refactor and
introduce design patterns, which make the code simpler and easier to change.

The general idea of patterns is applicable not only when an object-oriented
approach is used. People have also suggested design patterns for microservices
architecture. These define commonly occurring organizations of microser-
vices. I do not cover these here, as they are still immature; however, I have
included a link in the Recommended Reading section.

8.1.3 Refactoring

Refactoring means changing a program to reduce its complexity without
changing the external behavior of that program. Refactoring makes a program
more readable (so reducing the “reading complexity”) and more understand-
able. It also makes the program easier to change, which means that you reduce
the chances of making mistakes when you introduce new features.

You might think that if you follow good programming practice then you
won’t have to refactor your program. However, the reality of programming
is that as you make changes and additions to existing code, you inevitably
increase its complexity. The code becomes harder to understand and change.
The abstractions and operations that you started with become more and

Figure 8.8 A refactoring process

Identify code
“smell”

Identify refactoring
strategy

Make small
improvement until
strategy completed

Run automated
code tests

Start

M08_SOME6349_01_GE_C08.indd 250 30/09/2020 15:51

 8.1 ■ Fault avoidance 251

Code smell Refactoring action

Large classes Large classes may mean that the single responsibility
principle is being violated. Break down large classes into
easier-to-understand, smaller classes.

Long methods/functions Long methods or functions may indicate that the function is
doing more than one thing. Split into smaller, more specific
functions or methods.

Duplicated code Duplicated code may mean that when changes are needed,
these have to be made everywhere the code is duplicated.
Rewrite to create a single instance of the duplicated code
that is used as required.

Meaningless names Meaningless names are a sign of programmer haste.
They make the code harder to understand. Replace with
meaningful names and check for other shortcuts that the
programmer may have taken.

Unused code This simply increases the reading complexity of the code.
Delete it even if it has been commented out. If you find you
need it later, you should be able to retrieve it from the code
management system.

Table 8.6 Examples of code smells

more complex because you modify them in ways that you did not originally
anticipate.

Figure 8.8 shows a possible refactoring process. When planning product
development, you should always include time for code refactoring. This can
be a separate activity (Scrum sprint), or it can be an inherent part of your
normal development process.

Martin Fowler, a refactoring pioneer, suggests that the starting point for
refactoring should be to identify code “smells.” Code smells are indicators
in the code that there might be a deeper problem. For example, very large
classes may indicate that the class is trying to do too much. This probably
means that its structural complexity is high. Lots of lists of code smells are
available on the web. Table 8.6 lists some common code smells you should
look out for.

Code smells point you to code that needs to be refactored. There are many
possible refactorings you may use, and most of these help reduce program
complexity. Table 8.7 lists examples of refactoring that focus on reducing
complexity. Fowler has a longer list of possible refactorings that I have
included in the Recommended Reading section.

Refactoring involves changing a program without changing its functional-
ity. As far as possible, you should not do “big bang” refactoring, which means

M08_SOME6349_01_GE_C08.indd 251 30/09/2020 15:51

252 Chapter 8 ■ Reliable Programming

that you change a lot of code at the same time. Rather, you should make a
series of small changes, each of which is a step toward the more significant
changes that you’re aiming for. I recommend that you use automated testing,
discussed in Chapter 9, and run your suite of tests after every program change.
This will check that you have not accidentally introduced new bugs into your
program during refactoring.

To ensure that your program continues to work during refactoring, you may
have to temporarily maintain duplicate code in your system. Part of the system
may be refactored, but other parts may still use the old code. You should always
aim to remove this duplicate code when you have completed refactoring.

Refactoring usually involves making changes at different places in a pro-
gram. Refactoring tools are stand-alone tools or editor plug-ins that help
with the refactoring process. They partially automate the process of mak-
ing changes, such as renaming identifiers throughout a program or moving a
method from one class to another. This reduces the chances of you missing
changes to variables, objects, and functions that are required.

8.2 Input validation

Input validation involves checking that a user’s input is in the correct format
and that its value is within the range defined by input rules. Input validation is
critical for security and reliability. In addition to catching inputs from attack-
ers that are deliberately invalid, input validation detects accidentally invalid
inputs that could crash your program or pollute your database. A database

Type of complexity Possible refactoring

Reading complexity You can rename variable, function, and class names
throughout your program to make their purpose more obvious.

Structural complexity You can break long classes or functions into shorter units that
are likely to be more cohesive than the original large class.

Data complexity You can simplify data by changing your database schema or
reducing their complexity. For example, you can merge related
tables in your database to remove duplicated data held in
these tables.

Decision complexity You can replace a series of deeply nested if-then-else
statements with guard clauses, as I explained earlier in this
chapter.

Table 8.7 Examples of refactoring for complexity reduction

M08_SOME6349_01_GE_C08.indd 252 30/09/2020 15:51

 8.2 ■ Input validation 253

becomes polluted when incorrect information is added to it. User input errors
are the most common cause of database pollution.

Without exception, you should define rules for every type of input field,
and you should include code that applies these rules to check the field’s valid-
ity. If the input does not conform to the rules, it should be rejected.

For example, say you have a field in a form where users input their family
name. Although people can call themselves anything they wish, in practice
there are rules of thumb that can be used for checking names in languages that
use the Roman alphabet:5

1. The length of a name should be between 2 and 40 characters.

2. The characters in the name must be alphabetic or alphabetic characters
with an accent plus a small number of special separator characters. Names
must start with a letter.

3. The only non-alphabetic separator characters allowed are hyphen and
apostrophe.

If you use rules like these, it becomes impossible to input very long strings
that might lead to buffer overflow, or to embed SQL commands in a name
field. Of course, if someone decides to call themselves something like Mark
C-3PO, then they can’t use your system, but such unusual cases are rare.

In addition to using input fields for code injection, an attacker may input
an invalid but syntactically correct value in a field in an attempt to crash
your system or to discover potential vulnerabilities. For example, say you
have a field where a user is expected to input age in years. An attacker could
input a very long number in that field—such as 2147483651—hoping that
it will cause a numeric overflow or cause the system to crash in some other
way. You can easily stop this by including the rule that ages have to be 0 (if
babies can be included) or positive integers less than 120.6

Two approaches are commonly used for input security checks:

1. Blacklisting Filters are defined for known incorrect inputs. For example,
inputs can be checked for the existence of the <script> tag, which might
be used in a cross-site scripting attack.

5The Roman alphabet is used in languages such as English, Spanish, and German. Asian lan-
guages use different alphabets, so different rules may apply.
6According to Wikipedia, there has been only one person whose verified age was more
than 120.

M08_SOME6349_01_GE_C08.indd 253 30/09/2020 15:51

254 Chapter 8 ■ Reliable Programming

2. Whitelisting Filters are defined that identify the allowed inputs. For
example, if an input is a zip code (post code), then the format of the
zip code can be defined as a regular expression and the input checked
against that.

Whitelisting is usually better than blacklisting because attackers can some-
times find ways to get around the defined filter. Furthermore, the blacklisting
filter may sometimes reject legitimate input. For example, inputs that include
SQL usually include 'characters, so you may define a blacklist to exclude
inputs that contain '. However, some Irish names, such as O'Donnell, include
apostrophes and so would be rejected by this filter.

Various methods of implementing input validation are shown in Table 8.8.
You often need to use a combination of these approaches.

If possible, you should present users with a menu showing valid inputs.
This means they can’t input an incorrect value. Where there are a large num-
ber of choices, however, menus can be irritating. For example, asking a user
to choose a birth year from a menu involves displaying a menu with almost
100 items.

Validation method Implementation

Built-in validation functions You can use input validator functions provided by
your web development framework. For example, most
frameworks include a validator function that will check
that an email address is of the correct format. Web
development frameworks such as Django (Python), Rails
(Ruby), and Spring (Java) all include an extensive set of
validator functions.

Type coercion functions You can use type coercion functions, such as int() in
Python, that convert the input string into the desired
type. If the input is not a sequence of digits, the
conversion will fail.

Explicit comparisons You can define a list of allowed values and possible
abbreviations and check inputs against this list. For
example, if a month is expected, you can check
this against a list of all months and their recognized
abbreviations.

Regular expressions You can use regular expressions to define a pattern that
the input should match and reject inputs that do not
match that pattern. Regular expressions are a powerful
technique that I cover in Section 8.2.1.

Table 8.8 Methods of implementing input validation

M08_SOME6349_01_GE_C08.indd 254 30/09/2020 15:51

 8.2 ■ Input validation 255

One way to implement input checking is to use Javascript that runs in the
user’s browser or by using local code in a mobile app. This can be useful for
providing immediate information to users about possible errors. You should
not rely on this, however, as it is not difficult for a malicious user to bypass
these checks. Client-side validation is helpful because it detects user errors
and highlights them for correction. However, for security, you should also do
validation checks on the server.

8.2.1 Regular expressions

Regular expressions (REs) are a way of defining patterns. They were invented
in the 1950s but came into common use in the Unix operating system in the
1970s. A search can be defined as a pattern, and all items matching that pat-
tern are returned. For example, the following Unix command will list all the
JPEG files in a directory:

ls | grep ..*\.jpg$

grep is the UNIX regular expression matcher, and the regular expression
in this case is

..*\.jpg$

A single dot means “match any character,” and * means zero or more
repetitions of the previous character. Therefore, ..* means “one or more char-
acters.” The file prefix is .jpg and the $ character means that it must occur at
the end of a line.

There are many variants of REs, and most programming languages have
a regular expression library that you can use to define and match regular
expressions. I use the Python library (called re) in the examples here. There
are usually several ways of writing a regular expression, some more concise
than others. There is often a trade-off between conciseness and understand-
ability, so that very concise representations are often obscure and difficult to
understand. I prefer to write understandable REs, without concern for their
conciseness.

To use regular expressions to check an input string, you write an expression
that defines a pattern that will match all valid strings. You then check the input
against this pattern and reject any inputs that do not match. For example, say that
your input is a name, which should follow the rules that I have set out above.

M08_SOME6349_01_GE_C08.indd 255 30/09/2020 15:51

256 Chapter 8 ■ Reliable Programming

The regular expression below defines a pattern that encodes these rules. For sim-
plicity, I ignore the possibility that accented characters may be used in names.

^[a-zA-Z][a-zA-Z-']{1,39}$

The ^ sign forces a match to begin at the start of a string, and the $ sign
means it must match to the end. As you always want to check the whole of
an input, you should always include these signs in your regular expression.
Enclosing characters in square brackets means “match any of these charac-
ters,” and a-z means all alphabetic characters. The subexpression [a-zA-Z-‘]
therefore matches all upper- and lowercase letters plus the symbols, <hyphen>
and <apostrophe>.

The part of the expression in braces is used to implement the rule that a name
should have at least 1 character and no more than 40 characters. The numbers
specify the number of repetitions that should be matched; in this case, the expres-
sion will match 1 to 39 repetitions. Single-character names are not allowed.

This check will probably be effective for rejecting all invalid inputs, but
for added security you can add more explicit checks. SQL poisoning requires
quoted text to be included in a name and/or SQL comments that begin with a
double hyphen. Program 8.3 is a short Python function that includes this check.

Program 8.3 A name-checking function

def namecheck (s):

 # checks that a name only includes alphabetic characters, -, or single quote

 # names must be between 2 and 40 characters long

 # quoted strings and -- are disallowed

 namex = r"^[a-zA-Z][a-zA-Z-']{1,39}$"

 if re.match (namex, s):

 if re.search ("'.*'", s) or re.search ("--", s):

 return False

 else:

 return True

 else:

 return False

M08_SOME6349_01_GE_C08.indd 256 30/09/2020 15:51

 8.2 ■ Input validation 257

Different languages have different mechanisms for writing regular expres-
sions that may use special characters. In Python, these are written as raw
strings, which are indicated by preceding the string quotes with 'r'. The func-
tion re.match matches the RE from the beginning of the string being checked,
and re.search matches anywhere in the string being checked. Therefore, to
check for quoted strings, you can use the expression '.*', which matches any
sequence of characters between the quotes.

Notice that the function here returns either True or False. If the input does
not match the rules, it does not give any indication of why the validation
failed. It is best not to provide any information to an attacker when an incor-
rect input is detected. Error information can help attackers figure out what
checking is going on and how checking could be bypassed.

This kind of check is a syntactic check that is designed to catch inputs that
could be code rather than a valid name. This type of check does not catch
inputs that are syntactically valid but impossible names, such as “x--ugh.”
These have a nuisance value in that they will pollute your database so that
you will end up with many entries that do not relate to real people. You can
address this problem to some extent by insisting that names must always start
with a letter, but in general you need to devise other rules to check that names
are sensible. Because there are so many possible name variations, however,
there are no universal semantic checks that can be applied to them.

One of the problems with regular expressions is that they can quickly
become very complex. For example, say that you want to write a checker for
UK postcodes (zip codes in the United States). An example of a postcode is
ML10 6LT, and the general form of a postcode is

<area><district><sector><unit>

So, using ML10 6LT as an example, the area is ML, the district within the
area is 10, the sector within the district is 6, and the unit is LT. Postcodes are fine-
grained so that an address can be identified from a house number and postcode.

There are several variants of valid postcodes, and a general regular expres-
sion to represent them is complex. For example, the postcode-matching
expression below has been taken from a regular expression library:7

" ^([A-PR-UWYZ0-9][A-HK-Y0-9][AEHMNPRTVXY0-9]?

[ABEHMNPRVWXY0-9]? {1,2}[0-9][ABD-HJLN-UW-Z]{2}|GIR 0AA)$

7Author Stuart Wade, http://regexlib.com/REDetails.aspx?regexp_id=260

M08_SOME6349_01_GE_C08.indd 257 30/09/2020 15:51

http://regexlib.com/REDetails.aspx?regexp_id=260

258 Chapter 8 ■ Reliable Programming

I haven’t tested this expression, but I suspect it misses some special cases
of London postcodes that have a slightly different organization.

Because of the complexity of regular expressions where there are many
special cases, it is often simpler to break a regular expression into simpler sub-
expressions and check each of these individually. This makes it easier to test
that your validation check is accurate and complete. Therefore, for postcodes
you might check the individual elements of the postcode separately rather than
try to encompass all variants in a single regular expression.

8.2.2 Number checking

Number checking is used with numeric inputs to check that these are not too
large or too small and that they are sensible values for the type of input. For
example, if the user is expected to input height in meters, then you should
expect a value between 0.6 m (a very small adult) and 2.6 m (a very tall adult).
If possible, you should define a range check for all numeric inputs and check
that the values input fall within that range.

Number checking is important for two reasons:

1. If numbers are too large or too small to be represented, this may lead to
unpredictable results and numeric overflow or underflow exceptions. If
these exceptions are not properly handled, large or small inputs can cause
a program to crash.

2. The information in a database may be used by several other programs,
and these may make their own assumptions about the numeric values
stored. If the numbers are not as expected, this may lead to unpredict-
able results.

In addition to checking the ranges of inputs, you may perform checks
on these inputs to ensure that they represent sensible values. Not only do
these protect your system from accidental input errors, but they also stop
intruders who have gained access using a legitimate user’s credentials
from seriously damaging their account. For example, if a user is expected
to enter the reading from an electricity meter, then you should check that
it is (a) equal to or larger than the previous meter reading and (b) consis-
tent with the user’s normal consumption. Say that a user’s recent meter
readings are

20377, 20732, 21057, 21568

M08_SOME6349_01_GE_C08.indd 258 30/09/2020 15:51

 8.3 ■ Failure management 259

In this sequence, the difference between readings varies from 325 to 511.
This is normal given that different amounts of electricity are used at differ-
ent times of the year. If the user then enters 32043 (a difference greater than
10,000), this value is unlikely. It could be a mistake, where the user has typed
a 3 instead of a 2 as the first digit, or it could be a malicious input designed
to cause a very large bill to be generated for that user. You should reject the
value and ask for it to be reentered. If the user continues to enter the same
value, you should then flag it for manual checking.

8.3 Failure management

Software is so complex that, irrespective of how much effort you put into
fault avoidance, you will make mistakes. You will introduce faults into your
program that will sometimes cause it to fail. Program failures may also be
a consequence of the failure of an external service or component that your
software depends on. Whatever the cause, you have to plan for failure and
make provisions in your software for that failure to be as graceful as possible.

Software failures fall into three general categories:

1. Data failures The outputs of a computation are incorrect. For example, if
someone’s year of birth is 1981 and you calculate their age by subtracting
1981 from the current year, you may get an incorrect result. This type of
error, if unnoticed, can pollute a database, as the incorrect information is
used in computations that generate more incorrect information. Finding
this kind of error relies on users reporting data anomalies that they have
noticed. It does not usually lead to immediate system crashes or more
widespread data corruption.

2. Program exceptions The program enters a state where normal continuation
is impossible. If these exceptions are not handled, then control is transferred
to the run-time system, which halts execution. In short, the software crashes.
For example, if a request is made to open a file that does not exist, then an
IOexception has occurred. Programmer errors often lead to exceptions.

3. Timing failures Interacting components fail to respond on time or where
the responses of concurrently executing components are not properly syn-
chronized. For example, if service S1 depends on service S2, and S2 does
not respond to the request, then S1 will fail.

M08_SOME6349_01_GE_C08.indd 259 30/09/2020 15:51

260 Chapter 8 ■ Reliable Programming

As a product developer, your priority should be to manage failures and thus
minimize the effects of software failure on product users. This means that in
the event of failure:

■■ persistent data (i.e., data in a database or files) should not be lost or
corrupted;

■■ the user should be able to recover work done before the failure occurred;

■■ your software should not hang or crash;

■■ you should always “fail secure” so that confidential data are not left in a
state where an attacker can gain access to them.

Sometimes failures are so unexpected that you can’t achieve all of these
goals, but you should design your software so that, as far as possible, it will
fail gracefully without losing users’ work.

Transactions are a mechanism that can be used to avoid database inconsis-
tency and data loss. A transaction ensures that the database is always left in a
consistent state. Changes are grouped and applied to the database as a group
rather than individually. The group of changes is called an ACID transaction.
This is guaranteed either to be successful, with all changes applied to the
database, or to fail so that no changes are applied. The database is never left
in an inconsistent state.

Therefore, to avoid the problem of data corruption caused by failures, you
may use a relational DBMS and organize updates using transactions. As I
explained in Chapter 6, however, this may not always be possible if you use a
microservices architecture for your product or if you need a NoSQL database.

To allow a user to recover work and to avoid a system crash, you can use
the exception-handling mechanisms of the programming language that you
use. Exceptions are events that disrupt the normal flow of processing in a
program (Figure 8.9). When an exception occurs, control is automatically
transferred to exception-handling code. Most modern programming languages
include a mechanism for exception handling. In Python, you use try-except
keywords to indicate exception-handling code; in Java, the equivalent key-
words are try-catch.

In most programming languages, exceptions are detected by the language
run-time system. They are then passed to an exception handler for process-
ing. If the language does not support exceptions or if no exception handler
has been defined, control is transferred to the language’s run-time system.
This notifies the user of the error and terminates execution of the program.

M08_SOME6349_01_GE_C08.indd 260 30/09/2020 15:51

 8.3 ■ Failure management 261

As part of this process, the run-time system usually does some tidying up; for
example, it may close open files.

In languages with exceptions, the programmer can define exception han-
dlers that are executed when an exception occurs. Program 8.4 is a Python
example that illustrates some aspects of exception handling:

1. Normal processing is defined in a try block. If an exception of some kind
occurs in a try block, control is passed to the exception block, defined
after the except keyword.

2. The run-time system starts by looking for an exception handler in the
method or function where the exception occurred. If it does not find a
handler, it looks in the calling method or function until it finds one or
concludes that there is no defined handler.

3. Once an exception has been processed in a method or function, it can
be “raised.” This means that exception processing is not finished.
The run-time system will look for an exception handler in the calling
method or function. If found, it will execute the code to handle the
exception. You can see this in Program 8.4, where the exception is
processed in do_normal_processing () and in main (). The exception
handler in main () ensures that unencrypted workfiles are deleted
before failure.

Figure 8.9 Exception handling

Exception-handling block

Executing code

Normal processing

Exception raised

Normal processing

Exit

Exception-handling code

Exception re-raised or
abnormal exit

M08_SOME6349_01_GE_C08.indd 261 30/09/2020 15:51

262 Chapter 8 ■ Reliable Programming

Program 8.4 Secure failure

def do_normal_processing (wf, ef):

 # Normal processing here. Code below simulates exceptions

 # rather than normal processing

 try:

 wf.write ('line 1\n')

 ef.write ('encrypted line 1')

 wf.write ('line 2\n')

 wf.close()

 print ('Force exception by trying to open non-existent file')

 tst = open (test_root+'nofile')

 except IOError as e:

 print ('I/O exception has occurred')

 raise e

def main ():

 wf = open (test_root+'workfile.txt', 'w')

 ef = open(test_root+'encrypted.txt', 'w')

 try:

 do_normal_processing (wf, ef)

 except Exception:

 # If the modification time of the unencrypted work file (wf) is

 # later than the modification time of the encrypted file (ef)

 # then encrypt and write the workfile

 print ('Secure shutdown')

 wf_modtime = os.path.getmtime(test_root+'workfile.txt')

 ef_modtime = os.path.getmtime(test_root+'encrypted.txt')

 if wf_modtime > ef_modtime:

 encrypt_workfile (wf, ef)

 else:

 print ('Workfile modified before encrypted')

M08_SOME6349_01_GE_C08.indd 262 30/09/2020 15:51

 8.3 ■ Failure management 263

 wf.close()

 ef.close()

 os.remove (test_root+'workfile.txt')

 print ('Secure shutdown complete')

It is sometimes possible to define an exception handler that recovers
from a problem that has arisen and allows execution to continue normally.
This involves rolling back execution to a known correct state. More com-
monly, however, the exception is not a recoverable condition. The job of
the exception handler is to tidy up before the system shuts down. As you
can see in Program 8.4, this makes it possible for an application to “fail
securely,” so that no confidential information is exposed in the event of
a system failure.

Two other mechanisms can reduce the probability of users losing work
after a system failure (Figure 8.10):

1. Activity logging You keep a log of what the user has done and provide a
way to replay that against their data. You don’t need to keep a complete
session record, simply a list of actions since the last time the data were
saved to persistent store.

2. Auto-save You automatically save the user’s data at set intervals—say,
every 5 minutes. This means that, in the event of a failure, you can restore
the saved data with the loss of only a small amount of work. In practice,
you don’t have to save all of the data but simply the changes made since
the last explicit save.

If you are developing a system with a service-oriented architecture, you will
probably use external services provided by some other provider. You have no
control over these services, and the only information you have on service failure
is whatever is provided in the service’s API. As services may be written in dif-
ferent programming languages, these errors can’t be returned as exception types
but are usually returned as a numeric code. As I discussed in Chapter 6, RESTful
services often use the standard HTTP error codes to return error information.

When you are calling an external service, you should always check that the
return code of the called service indicates that it has operated successfully.
You should also, if possible, check the validity of the result of the service
call, as you cannot be certain that the external service has carried out its
computation correctly. You can use an assert statement, which is available

M08_SOME6349_01_GE_C08.indd 263 30/09/2020 15:51

264 Chapter 8 ■ Reliable Programming

in languages such as Java and Python, to check the result of an external call.
This raises an AssertionError exception if the call returns unexpected results.

Program 8.5 is a Python example of how to use assertions to check the
results of an external service that checks credit ratings. I have simulated an
external service with a call to a local function.

In addition to “normal” failures of service, where the service cannot deliver
the result expected or the result is incorrect in some way, you have to deal with
the situation where the service simply does not respond. If your program halts
and waits for a reply, then your program will hang because of the unrespon-
sive external service. The user will be unable to continue working.

The simplest way to get around this problem is to use a timeout mechanism
where you start a timer when you call a service. If no response is received within
some set time, the timer raises an exception and the service call is canceled.

As I explained in Chapter 6, however, the problem with using timeouts
is that when you have several users of your service, the timeout mechanism
kicks in for all of them and they all are delayed by the failed external service.
It is better to access external services through a circuit breaker (see Figure
6.12). Using a timeout mechanism, the circuit breaker detects whether an
external service is not responding and immediately rejects requests so that the
calling service does not have to wait for a response. The circuit breaker can
also periodically check whether the requested service has returned to normal
operation.

When you are processing exceptions that will lead to a system failure, you
have to decide what information you should give the user. Simply repeating
a technical run-time system error message, such as “kernel panic,” is not

Figure 8.10 Auto-save and activity logging

Auto-save Command
logger

Last
saved state

Commands
executed

Crash
recovery

Restored
state

M08_SOME6349_01_GE_C08.indd 264 30/09/2020 15:51

 8.3 ■ Failure management 265

helpful. You should translate the error messages into a form that is under-
standable and reassures users that they are not the cause of the problem. You
may also send information to your servers for further analysis, although you
must get the user’s permission before you do this.

Program 8.5 Using assertions to check results from an external service

def credit_checker (name, postcode, dob):

 # Assume that the function check_credit_rating calls an external service

 # to get a person's credit rating. It takes a name, postcode (zip code),

 # and date of birth as parameters and returns a sequence with the database

 # information (name, postcode, date of birth) plus a credit score between 0 and

 # 600. The final element in the sequence is an error_code that may

 # be 0 (successful completion), 1, or 2.

NAME = 0

POSTCODE = 1

DOB = 2

RATING = 3

RETURNCODE = 4

REQUEST_FAILURE = True

ASSERTION_ERROR = False

cr = ['', '', '', -1, 2]

Check credit rating simulates call to external service

cr = check_credit_rating (name, postcode, dob)

try:

 assert cr [NAME] == name and cr [POSTCODE] == postcode and cr [DOB] == dob

 and (cr [RATING] >= 0 and cr [RATING] <= 600) and

 (cr [RETURNCODE] >= 0 and cr [RETURNCODE] <= 2)

 if cr [RETURNCODE] == 0:

 do_normal_processing (cr)

 else:

 do_exception_processing (cr, name, postcode, dob, REQUEST_FAILURE)

except AssertionError:

 do_exception_processing (cr, name, postcode, dob, ASSERTION_ERROR)

M08_SOME6349_01_GE_C08.indd 265 30/09/2020 15:51

266 Chapter 8 ■ Reliable Programming

K E Y P O I N T S

■■ The most important quality attributes for most software products are reliability, security,
availability, usability, responsiveness, and maintainability.

■■ To avoid introducing faults into your program, you should use programming practices that
reduce the probability that you will make mistakes.

■■ You should always aim to minimize complexity in your programs. Complexity makes programs
harder to understand. It increases the chances of programmer errors and makes the program
more difficult to change.

■■ Design patterns are tried and tested solutions to commonly occurring problems. Using
patterns is an effective way to reduce program complexity.

■■ Refactoring is the process of reducing the complexity of an existing program without
changing its functionality. It is good practice to refactor your program regularly to make it
easier to read and understand.

■■ Input validation involves checking all user inputs to ensure that they are in the format that
is expected by your program. Input validation helps avoid the introduction of malicious code
into your system and traps user errors that can pollute your database.

■■ Regular expressions are a way of defining patterns that can match a range of possible input
strings. Regular expression matching is a compact and fast way of checking that an input
string conforms to the rules you have defined.

■■ You should check that numbers have sensible values depending on the type of input
expected. You should also check number sequences for feasibility.

■■ You should assume that your program may fail and manage these failures so that they have
minimal impact on the user.

■■ Exception management is supported in most modern programming languages. Control is
transferred to your own exception handler to deal with the failure when a program exception
is detected.

■■ You should log user updates and maintain user data snapshots as your program executes.
In the event of a failure, you can use these to recover the work that the user has done. You
should also include ways of recognizing and recovering from external service failures.

R E C O M M E N D E D R E A D I N G

“McCabe’s Cyclomatic Complexity and Why We Don’t Use It”

This post is a good explanation of the problems with the widely used cyclomatic complexity
metric used to measure the decision complexity of code. As the author says, there is no simple
measurement that can express complexity as a single number. (B. Hummel, 2014)
https://www.cqse.eu/en/blog/mccabe-cyclomatic-complexity/

M08_SOME6349_01_GE_C08.indd 266 30/09/2020 15:51

https://www.cqse.eu/en/blog/mccabe-cyclomatic-complexity/

 Exercises 267

“A Beginner’s Guide to Design Patterns”

This readable introduction to design patterns includes examples of patterns that are different
from the ones I’ve shown in the chapter. The accompanying code is in PHP but is fairly easy to
understand. (N. Bautista, 2010)
https://code.tutsplus.com/articles/a-beginners-guide-to-design-patterns--net-12752

“A Pattern Language for Microservices”

This site includes a number of design patterns for microservices. I suspect there is quite a lot of
overlap between these, and as we gain experience with microservices architectures, it will be
possible to integrate some of these patterns. (C. Richardson, undated)
https://microservices.io/patterns/

“Catalog of Refactorings”

This is a comprehensive list of possible code refactorings that can be applied to reduce the
complexity of your programs. (M. Fowler, 2013)
https://refactoring.com/catalog/index.html

“Input Validation Cheat Sheet”

This is a good summary of why you need to validate inputs and techniques you can use for this.
(OWASP, 2017)
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet

“How to Handle Errors and Exceptions in Large Scale Software Projects”

This clearly written article discusses the difference between errors and exceptions and emphasizes
the importance of managing these for reliable system operation. (F. Dimitreivski, 2017)
https://raygun.com/blog/errors-and-exceptions/

P R E S E N T A T I O N S , V I D E O S , A N D L I N K S

https://iansommerville.com/engineering-software-products/reliable-programming

E X E R C I S E S

 8.1. Describe, in your own words, each of the seven quality attributes shown in Figure 8.1.

 8.2. Explain why reducing the complexity of a program is likely to reduce the number of faults in
that program.

 8.3. Explain why it is practically impossible to avoid introducing complexity into a software
product.

M08_SOME6349_01_GE_C08.indd 267 30/09/2020 15:51

https://code.tutsplus.com/articles/a-beginners-guide-to-design-patterns--net-12752
https://microservices.io/patterns/
https://refactoring.com/catalog/index.html
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet
https://raygun.com/blog/errors-and-exceptions/
https://iansommerville.com/engineering-software-products/reliable-programming

268 Chapter 8 ■ Reliable Programming

 8.4. Give two reasons why using design patterns in your code contributes to fault avoidance.

 8.5. Based on your own programming experience, suggest three examples of code smells, apart
from those listed in Table 8.6, that might suggest the need for program refactoring.

 8.6. The Luhn algorithm is one of the checks applied to test whether a credit card number is
valid. Assuming that credit card numbers are 16 digits long, look up and implement the
Luhn algorithm to check that a valid credit card number has been input.

 8.7. Using the regular expression library in a programming language that you know, write a
short program to check whether a filename conforms to the Linux rules for filenames. Look
up these rules if you don’t know them.

 8.8. An alternative to using regular expressions to check that an input string is valid is to write
your own code to check the input. What are the advantages and disadvantages of using
this approach?

 8.9. Explain why the use of ACID transaction management in a database management system
helps to avoid system failures.

 8.10. Assume that you can save and restore the state of a program using functions called
save_state () and restore_state (). Show how these can be used in an exception handler to
provide “non-stop” operation, where in the event of a failure, the system state is restored
to the last saved state and execution is restarted from there.

M08_SOME6349_01_GE_C08.indd 268 30/09/2020 15:51

Testing

Software testing is a process in which you execute your program using data
that simulate user inputs. You observe your program’s behavior to see whether
or not it is doing what it’s supposed to do. Tests pass if the behavior is what
you expect; tests fail if the behavior differs from that expected.

If your program does what you expect, then for the inputs used, the pro-
gram behaves correctly. If these inputs are representative of a larger set of
inputs, you can infer that the program will behave correctly for all members
of this larger input set. This is especially true if you test it with several inputs
from this larger set and it behaves as you expect for all of them.

If the behavior of the program does not match the behavior that you expect,
then this means your program has bugs that need to be fixed. There are two
causes of program bugs:

1. Programming errors You have accidentally included faults in your pro-
gram code. For example, a common programming error is an “off-by-1”
error, in which you make a mistake with the upper bound of a sequence
and fail to process the last element in that sequence.

2. Understanding errors You have misunderstood or have been unaware of
some of the details of what the program is supposed to do. For example, if
your program processes data from a file, you may not be aware that some
of these data are in the wrong format, so your program doesn’t include
code to handle this.

In both cases, you have to change your code to fix the bug or bugs that the
tests have identified. If your tests can isolate a bug to code within a single unit
in your program, it is usually easy to find and fix that bug. However, if tests

9

M09_SOME6349_01_GE_C09.indd 269 27/09/2020 14:06

270 Chapter 9 ■ Testing

fail only when several program components are cooperating then it is often
difficult to find and correct the bug or bugs.

Testing is the main technique used to convince software developers and
product managers that a software product is fit for purpose and ready to be
released for sale or general distribution. However, testing can never demon-
strate that a program is fault-free and will never fail. There may be inputs or
input combinations that have not been used in tests, and the program might
fail if these inputs are used in practice.

Consequently, I think it is essential to use code reviews (covered in Sec-
tion 9.5) as well as program testing. Reviews can find bugs that testing does
not reveal. They involve the developer talking through the code with other
developers, with the aim of finding bugs and suggesting ways in which the
code can be improved.

In this chapter, I concentrate on functional testing. This means testing the
software to find bugs and to demonstrate that the code works as expected.
Other types of testing are also important for software product development,
as shown in Table 9.1.

User testing focuses on testing what the software does and how users inter-
act with the system (Figure 9.1), rather than testing the implementation to find

Test type Testing goals

Functional testing Test the functionality of the overall system. The goals
of functional testing are to discover as many bugs as
possible in the implementation of the system and to
provide convincing evidence that the system is fit for
its intended purpose.

User testing Test that the software product is useful to and usable
by end-users. You need to show that the features
of the system help users do what they want to do
with the software. You should also show that users
understand how to access the software’s features and
can use these features effectively.

Performance and load testing Test that the software works quickly and can handle
the expected load placed on the system by its users.
You need to show that the response and processing
time of your system is acceptable to end-users. You
also need to demonstrate that your system can handle
different loads and scales gracefully as the load on the
software increases.

Security testing Test that the software maintains its integrity and can
protect user information from theft and damage.

Table 9.1 Types of testing

M09_SOME6349_01_GE_C09.indd 270 27/09/2020 14:06

 Chapter 9 ■ Testing 271

bugs. Like functional testing, it identifies changes that need to be made to the
software to make it more usable or responsive.

User testing may be organized into two phases:

1. Alpha testing Users work with developers to test the system. The aim of
alpha testing is to answer the question “Do users really want the features
that you’ve planned for your product?” Ideally, you should involve users
in development from an early stage in the process so that you can get
feedback on whether product features are likely to be useful. In practice,
however, this is hard to organize, especially for new products.

2. Beta testing You distribute early versions of your product to users for
comments. Beta testing also answers questions about the usefulness of
features, but it is usually more concerned with the usability of the product
and whether it works effectively in the user’s operational environment.

Performance testing aims to check that the system responds quickly to
requests for service. If the system processes transactions, you should test
that transactions are processed without undue delays. We know that users
have a low tolerance for delay when they use software. It is therefore impor-
tant that when they activate a function, your product’s response is fast.
Performance can be adversely affected when a system is heavily loaded, so
you need to test responses with different numbers of users and with differ-
ent workloads.

Figure 9.1 User testing

Usability
testing

Utility
testing

User testing

Test if users can learn to use the
system quickly.
Test if users can use the system
without making mistakes.

User interface
testing

Test if users like the look and feel
of the system’s user interface.

Test if the system features allow users
to do what they want to do with the system.
Test if the system feature set offers enough
coverage of users’ work.

M09_SOME6349_01_GE_C09.indd 271 27/09/2020 14:06

272 Chapter 9 ■ Testing

Load testing usually involves preparing test scripts and using a simulator
to mimic the actions of the system users. If you have designed your system
for 100 simultaneous connections (say), you need to gradually increase the
number of connections to this level and then go beyond the expected maxi-
mum load. In such cases, your system should degrade gracefully rather than
fail abruptly. Load testing can help you identify bottlenecks in your code that
need improvement. If your system is based on a microservices architecture,
load testing can help you identify the services that you may need to auto-scale
as the load on your software increases.

Security testing is a specialized process that involves testing the software
to find vulnerabilities that attackers may exploit. I briefly discuss security
testing in Section 9.4, but I don’t have the expertise or experience to cover
this topic in detail.

Major companies spend thousands of hours testing their products, yet
bugs still reveal themselves after the software has been delivered and put
into use. The reason is that modern software is incredibly complex. Not only
are there thousands or hundreds of thousands of lines of code in the products
themselves, but also the software interacts with a very complex environment
(operating system, container, database, etc.) that may change in unexpected
ways after a product has gone into use.

Consequently, you can never exhaustively test a system or be completely
confident that it does not contain faults. You have to make a pragmatic deci-
sion about the cost effectiveness of testing and release your product when
you think it is good enough. You may deliberately decide to release software
with known bugs because the software meets a need. Users may be willing to
accept some unreliability if the software saves them time and effort in other
areas. You have to be very careful here, however. Many software companies
have overestimated the usefulness of their product and have failed because
users have rejected their buggy software.

9.1 Functional testing

Functional testing involves developing a large set of program tests so that,
ideally, all of a program’s code is executed at least once. The number of tests
needed obviously depends on the size and the functionality of the application.
For a business-focused web application, you may have to develop thousands of
tests to convince yourself that your product is ready for release to customers.

M09_SOME6349_01_GE_C09.indd 272 27/09/2020 14:06

 9.1 ■ Functional testing 273

Software testing is a staged activity in which you initially test individual
units of code (Figure 9.2 and Table 9.2). You integrate code units with other
units to create larger units and then do more testing. The process continues
until you have created a complete system ready for release.

You should not wait until you have a complete system before you start sys-
tem testing. Testing should start on the day you start writing code. You should
test as you implement code, so that even a minimal system with hardly any
features is tested. As more features are added, the develop/test cycle continues
until a finished system is available. This develop/test cycle is simplified if
you develop automated tests so that you can rerun tests whenever you make
code changes.

9.1.1 Unit testing

Unit testing is part of the normal process of program development. While
you are developing a code unit, you should also develop tests for that code.
A code unit is anything that has a clearly defined responsibility. It is usually
a function or class method but can also be a module that includes a small
number of other functions. It is normally possible to automate unit tests, as I
explain in Section 9.2.

Figure 9.2 Functional testing

Feature
testing

System
testing

Release
testing

Unit
testing

Start

M09_SOME6349_01_GE_C09.indd 273 27/09/2020 14:06

274 Chapter 9 ■ Testing

Unit testing is based on a simple general principle:

If a program unit behaves as expected for a set of inputs that have some
shared characteristics, it will behave in the same way for a larger set
whose members share these characteristics.

For example, say your program behaves correctly when presented with
inputs from the set {1, 5, 17, 45, 99}. If you know that the intention of the
unit is to process integer inputs in the range 1 to 99, you may conclude that
it will also process all other integers in this range correctly.

To test a program efficiently, you should identify sets of inputs that will
be treated in the same way in your code. These sets are called equivalence
partitions (Figure 9.3). The equivalence partitions that you identify should
not just include those containing inputs that produce the correct values. You
should also identify “incorrectness partitions,” where the inputs are deliber-
ately incorrect. These test that your program detects and handles incorrect
inputs in the expected way.

Testing process Description

Unit testing The aim of unit testing is to test program units in isolation. Tests
should be designed to execute all of the code in a unit at least
once. Individual code units are tested by the programmer as they
are developed.

Feature testing Code units are integrated to create features. Feature tests
should test all aspects of a feature. All of the programmers who
contribute code units to a feature should be involved in its testing.

System testing Code units are integrated to create a working (perhaps
incomplete) version of a system. The aim of system testing is
to check that there are no unexpected interactions between the
features in the system. System testing may also involve checking
the responsiveness, reliability, and security of the system. In
large companies, a dedicated testing team may be responsible for
system testing. In small companies, this is impractical, so product
developers are also involved in system testing.

Release testing The system is packaged for release to customers and the release
is tested to check that it operates as expected. The software may
be released as a cloud service or as a download to be installed
on a customer’s computer or mobile device. If DevOps is used,
then the development team is responsible for release testing;
otherwise, a separate team has that responsibility.

Table 9.2 Functional testing processes

M09_SOME6349_01_GE_C09.indd 274 27/09/2020 14:06

 9.1 ■ Functional testing 275

You should test your program using several inputs from each equivalence
partition. If possible, you should identify partition boundaries and choose
inputs at these boundaries. The reason for this is that a very common program-
ming mistake is an off-by-1 error, where either the first or the last element
in a loop is not properly handled. You may also identify output equivalence
partitions and create test inputs that generate results in these partitions.

I illustrate the idea of equivalence partitions using tests for the simple name-
checking function that I used in Chapter 8 to demonstrate the use of regular
expressions (see Program 8.3). I show the program again as Program 9.1. This
function checks that its input parameter (a person’s family name) conforms to
a set of rules. Recall the rules for family names:

1. The length of a name should be between 2 and 40 characters.

2. The characters in the name must be alphabetic or alphabetic characters
with an accent plus a small number of special separator characters.

3. The only nonalphabetic separator characters allowed are hyphen and
apostrophe. Names must start with a letter.

Figure 9.3 Equivalence partitions

Set of all possible inputs

5

Partition 1, where all
inputs share characteristic C1
and some share characteristic
C2.

Partition 2, where all inputs share characteristic
C2. Some inputs also share characteristic C1.

Partition 3, where all
inputs share
characteristic C3.
Some inputs also share
characteristic C4.

Partition 4 where all inputs
share characteristic C4.
Some inputs also share
characteristic C3.

Partition 5 where all
inputs share characteristics
C4 and C5. None share
characteristic C3.

1 2

3

4

M09_SOME6349_01_GE_C09.indd 275 27/09/2020 14:06

276 Chapter 9 ■ Testing

Program 9.1 A name-checking function

def namecheck (s):

 # Checks that a name only includes alphabetic characters, -, or

 # a single quote. Names must be between 2 and 40 characters long.

 # Quoted strings and -- are disallowed.

 namex = r"^[a-zA-Z][a-zA-Z-']{1,39}$”

 if re.match (namex, s):

 if re.search ("'.*'", s) or re.search ("--", s):

 return False

 else:

 return True

 else:

 return False

From these rules, you can identify the equivalence partitions shown in Table 9.3.
You can then go on to derive inputs from these equivalence partitions, such
as Sommerville, O’Connell, Washington-Wilson, Z, and -Wesley. I return to
this example in the test automation section and show the actual inputs that I
used to test this function.

Equivalence partition Characteristic

Correct names 1 The inputs include only alphabetic characters and are
between 2 and 40 characters long.

Correct names 2 The inputs include only alphabetic characters, hyphens, or
apostrophes and are between 2 and 40 characters long.

Incorrect names 1 The inputs are between 2 and 40 characters long but include
disallowed characters.

Incorrect names 2 The inputs include only allowed characters but are either a
single character or more than 40 characters long.

Incorrect names 3 The inputs are between 2 and 40 characters long but the
first character is a hyphen or an apostrophe.

Incorrect names 4 The inputs include only valid characters and are between 2
and 40 characters long but include a double hyphen, quoted
text, or both.

Table 9.3 Equivalence partitions for the name-checking function

M09_SOME6349_01_GE_C09.indd 276 27/09/2020 14:06

 9.1 ■ Functional testing 277

Guideline Explanation

Test edge cases If your partition has upper and lower bounds (e.g., length
of strings, numbers, etc.), choose inputs at the edges of
the range.

Force errors Choose test inputs that force the system to generate all
error messages. Choose test inputs that should generate
invalid outputs.

Fill buffers Choose test inputs that cause all input buffers to overflow.

Repeat yourself Repeat the same test input or series of inputs several
times.

Overflow and underflow If your program does numeric calculations, choose test
inputs that cause it to calculate very large or very small
numbers.

Don’t forget null and zero If your program uses pointers or strings, always test with
null pointers and strings. If you use sequences, test with
an empty sequence. For numeric inputs, always test with
zero.

Keep count When dealing with lists and list transformations, keep
count of the number of elements in each list and check
that these are consistent after each transformation.

One is different If your program deals with sequences, always test with
sequences that have a single value.

Table 9.4 Unit testing guidelines

Once you have identified equivalence partitions, the question is “What are
the inputs from each partition that are most likely to uncover bugs?” Many
proposals for unit testing guidelines are based around equivalence partitions
and advise what test inputs to use. For example, Table 9.4 shows a number of
testing guidelines based on those suggested by James Whittaker.1

These guidelines are not hard and fast rules but are based on extensive
testing experience. A general observation that underlies these guidelines is
that programmers make mistakes at boundaries. Consequently, test inputs at
natural boundaries are the most likely to reveal program bugs. For example,
for numeric inputs, you should always test using the highest and lowest pos-
sible values; for string inputs, you should always test with the empty string
and single-character strings.

1James A. Whittaker, How to Break Software: A Practical Guide to Testing (Boston: Addison-
Wesley, 2002).

M09_SOME6349_01_GE_C09.indd 277 27/09/2020 14:06

278 Chapter 9 ■ Testing

9.1.2 Feature testing

A product feature implements some useful user functionality. Features have
to be tested to show that the functionality is implemented as expected and
that the functionality meets the real needs of users. For example, if your
product has a feature that allows users to log in using their Google account,
then you have to check that this feature registers the users correctly and
informs them of what information will be shared with Google. You may
want to check that users are given the option to sign up for email informa-
tion about your product.

Normally, a feature that does several things is implemented by multiple
interacting program units. These units may be implemented by different
developers, and all of these developers should be involved in the feature-
testing process. This process should involve two types of tests:

1. Interaction tests These test the interactions between the units that imple-
ment the feature. The developers of the units that are combined to make
up the feature may have different understandings of what is required of
that feature. These misunderstandings will not show up in unit tests;
they may only come to light when the units are integrated. The integra-
tion may also reveal bugs in program units that were not exposed by
unit testing.

2. Usefulness tests These test that the feature implements what users are
likely to want. For example, the developers of a login with a Google
feature may have implemented an opt-out default on registration so
that users receive all emails from a company. Users must expressly
choose what type of emails they don’t want. They might prefer an
opt-in default so they can choose what types of email they do want to
receive. The product manager should be closely involved in design-
ing usefulness tests, as they should have the most knowledge of user
preferences.

A good way to organize feature testing is around a scenario or a set of user
stories (see Chapter 3). For example, the “sign-in with Google” feature might
be covered by three user stories, as shown in Table 9.5. Based on these user
stories, you might develop a set of tests for the feature that carry out checks
as shown in Table 9.6.

To develop feature tests, you need to understand the feature from the per-
spective of the user representatives and the product manager. You need to ask

M09_SOME6349_01_GE_C09.indd 278 27/09/2020 14:06

 9.1 ■ Functional testing 279

them to explain what they expect from a feature and how they normally use
it. There are published guidelines on how to develop feature tests, but I find
these guidelines to be vague and generally unhelpful.

Feature testing is an integral part of behavior-driven development (BDD).
In BDD, the behavior of a product is specified using a domain-specific lan-
guage, and feature tests are automatically derived from this specification.
Special-purpose tools are available to automate these tests. I include a link
to information on BDD in the Recommended Reading section, but as I’ve
never used this approach to software development, I can’t comment on its
effectiveness.

Story title User story

User registration As a user, I want to be able to log in without creating a new
account so that I don’t have to remember another login ID and
password.

Information sharing As a user, I want to know what information you will share with
other companies. I want to be able to cancel my registration if I
don’t want to share this information.

Email choice As a user, I want to be able to choose the types of email that I’ll
get from you when I register for an account.

Table 9.5 User stories for the sign-in with Google feature

Test Description

Initial login screen Test that the screen displaying a request for Google account
credentials is correctly displayed when a user clicks on the
“Sign-in with Google” link. Test that the login is completed if
the user is already logged in to Google.

Incorrect credentials Test that the error message and retry screen are displayed if
the user inputs incorrect Google credentials.

Shared information Test that the information shared with Google is displayed,
along with a cancel or confirm option. Test that the registration
is canceled if the cancel option is chosen.

Email opt-in Test that the user is offered a menu of options for email
information and can choose multiple items to opt in to emails.
Test that the user is not registered for any emails if no options
are selected.

Table 9.6 Feature tests for sign-in with Google

M09_SOME6349_01_GE_C09.indd 279 27/09/2020 14:06

280 Chapter 9 ■ Testing

9.1.3 System and release testing

System testing involves testing the system as a whole rather than the indi-
vidual system features. System testing starts at an early stage of the product
development process—as soon as you have a workable, albeit incomplete,
version of a system. System testing should focus on four issues:

1. Testing to discover if there are unexpected and unwanted interactions
between the features in a system.

2. Testing to discover if the system features work together effectively to
support what users really want to do with the system.

3. Testing the system to make sure it operates in the expected way in the
different environments where it will be used.

4. Testing the responsiveness, throughput, security, and other quality attri-
butes of the system.

Unexpected interactions between features can occur because feature design-
ers may make different assumptions about how features operate. An example
is a word processor that includes the ability to define multiple columns, with
justified text in each column. The designer of the text justification feature may
assume that it will always be possible to fit words into a column. The designer
of a hyphenation feature may allow users to turn off hyphenation. However,
if a user defines very narrow columns and turns hyphenation off, then it may
be impossible to fit long words into the narrow column.

When you are testing for feature interaction, you should not just be looking for
bugs or omissions in the feature implementation. Software products are intended
to help users accomplish some task. You therefore need to design tests to check
that a product is really effective in doing what users might want to do with it. It
may be that all of the features they need are available but it is awkward to use them
together, or some features may not really be well suited to supporting a user’s tasks.

Environment testing involves testing that your system works in its intended
operating environment and integrates properly with other software. If your
product is accessed using a browser rather than a dedicated app, then you need
to test it with the different browsers that are likely to be used. If you integrate
with other software, you need to check that the integration works properly
and information is seamlessly exchanged.

I think the best way to systematically test a system is to start with a set of sce-
narios that describe possible uses of the system and then work through these sce-
narios each time a new version of the system is created. You may have developed
these scenarios as part of the process of understanding what the system has to do. If
not, you should create scenarios so that you can have a repeatable testing process.

M09_SOME6349_01_GE_C09.indd 280 27/09/2020 14:06

 9.1 ■ Functional testing 281

For example, say you are developing a holiday-planning product that’s
aimed at families traveling with children. For those families, direct flights are
easier than changing at a hub airport. To fit in with children’s sleep patterns,
it is best for them to travel on daytime flights rather than on flights that leave
very early or arrive late in the evening. Table 9.7 is an example of a scenario
that describes parents with young children planning their holiday.

Using the scenario, you identify a set of end-to-end pathways that users
might follow when using the system. An end-to-end pathway is a sequence
of actions from starting to use the system for the task through to completion
of the task. There are several completion states when using this system, and
you should identify a pathway for all of them. Table 9.8 shows examples of
pathways that could be used.

For each pathway, you need to check that the system’s responses are cor-
rect and that appropriate information is provided to the user. For example, if
Maria requests direct flights from Edinburgh Airport, you should check that
the flights displayed match those that are shown on Edinburgh Airport’s web-
site. You should not just assume that the source used for flight information
is correct. You also have to test that the system behaves sensibly if external
services on which it depends, such as airline websites, are unavailable.

As with unit and feature testing, you should try to automate as many of
the system tests as possible and run these tests each time a new version of
the system is created. Because end-to-end pathways involve user interaction,
however, it may be impractical to automate all system tests. As I explain in

Andrew and Maria have a two-year-old son and a four-month-old daughter. They live in
Scotland and they want to have a holiday in the sunshine. However, they are concerned
about the hassle of flying with young children. They decide to try a family holiday-
planning product to help them choose a destination that is easy to get to and that fits in
with their children’s routines.

Maria navigates to the holiday planner website and selects the “find a destination” page.
This presents a screen with a number of options. She can choose a specific destination or
a departure airport and find all destinations that have direct flights from that airport. She
can also input the time band that she’d prefer for flights, holiday dates, and a maximum
cost per person.

Edinburgh is their closest departure airport. She chooses “find direct flights.” The system
then presents a list of countries that have direct flights from Edinburgh and the days
when these flights operate. She selects France, Italy, Portugal, and Spain and requests
further information about these flights. She then sets a filter to display flights that
leave on a Saturday or Sunday after 7.30 am and arrive before 6 pm. She also sets the
maximum acceptable cost for a flight. The list of flights is pruned according to the filter
and is redisplayed. Maria then clicks on the flight she wants. This opens a tab in her
browser showing a booking form for this flight on the airline’s website.

Table 9.7 Choosing a holiday destination

M09_SOME6349_01_GE_C09.indd 281 27/09/2020 14:06

282 Chapter 9 ■ Testing

Section 9.2, some testing tools can mimic interaction through a browser by
capturing and replaying mouse clicks and selections. Sometimes, however,
there are no real alternatives to manual testing based on a test script that
describes the actions that a tester should take.

Release testing is a type of testing of a system that’s intended for release
to customers. There are two fundamental differences between release testing
and system testing:

1. Release testing tests the system in its real operational environment rather
than in a test environment. Although you obviously try to simulate the
real environment when testing, there may be differences between it and
the test environment. Problems commonly arise with real user data, which
are sometimes more complex and less reliable than test data.

2. The aim of release testing is to decide if the system is good enough to
release, not to detect bugs in the system. Therefore, you may ignore some
tests that “fail” if these have minimal consequences for most users.

Preparing a system for release involves packaging that system for deploy-
ment (e.g., in a container if it is a cloud service) and installing software and
libraries that are used by your product. You must define configuration param-
eters, such as the name of a root directory, the database size limit per user, and
so on. However, you may make mistakes in this installation process. There-
fore, you should rerun the system tests to check that you have not introduced
new bugs that affect the functionality, performance, or usability of the system.
Wherever possible, when testing the software release you should use real user
data and other information collected from running the system.

As I discuss in Chapter 10, if your product is deployed in the cloud, you
may use a continuous release process. This involves releasing a new version
of your product whenever a change is made. This is practical only if you make
frequent small changes and use automated tests to check that these changes
have not introduced new bugs into your program.

Table 9.8 End-to-end pathways

1. User inputs departure airport and chooses to see only direct flights. User quits.
2. User inputs departure airport and chooses to see all flights. User quits.
3. User chooses destination country and chooses to see all flights. User quits.
4. User inputs departure airport and chooses to see direct flights. User sets filter

specifying departure times and prices. User quits.
5. User inputs departure airport and chooses to see direct flights. User sets filter

specifying departure times and prices. User selects a displayed flight and clicks
through to airline website. User returns to holiday planner after booking flight.

M09_SOME6349_01_GE_C09.indd 282 27/09/2020 14:06

 9.2 ■ Test automation 283

9.2 Test automation

One of the most significant innovations in agile software engineering is automated
testing, which is now widely used in product development companies. Automated
testing (Figure 9.4) is based on the idea that tests should be executable. An execut-
able test includes the input data to the unit that is being tested, the expected result,
and a check that the unit returns the expected result. You run the test and the test
passes if the unit returns the expected result. Normally, you should develop hun-
dreds or thousands of executable tests for a software product.

The development of automated testing frameworks, such as JUnit for Java
in the 1990s, reduced the effort involved in developing executable tests.
Testing frameworks are now available for all widely used programming lan-
guages. A suite of hundreds of unit tests, developed using a framework, can
be run on a desktop computer in a few seconds. A test report shows the tests
that have passed and failed.

Testing frameworks provide a base class, called something like “TestCase”
that is used by the testing framework. To create an automated test, you define
your own test class as a subclass of this TestCase class. Testing frameworks
include a way of running all of the tests defined in the classes that are based
on TestCase and reporting the results of the tests.

I illustrate this for Python in Program 9.2, which shows examples of simple
automated tests for a function that’s part of a financial planning product. The
function calculates the interest due based on the amount of the loan and the
period of the loan. The comments in the code explain the fundamental com-
ponents of the test case.

Figure 9.4 Automated testing

Test
runner

Code
being tested

Testing
framework

Files of executable tests

Test
report

M09_SOME6349_01_GE_C09.indd 283 27/09/2020 14:06

284 Chapter 9 ■ Testing

Program 9.2 Test methods for an interest calculator

TestInterestCalculator inherits attributes and methods from the class

TestCase in the testing framework unittest

class TestInterestCalculator (unittest.TestCase):

 # Define a set of unit tests where each test tests one thing only

 # Tests should start with test_ and the name should explain

 # what is being tested

 def test_zeroprincipal (self):

 #Arrange - set up the test parameters

 p = 0

 r = 3

 n = 31

 result_should_be = 0

 #Action - Call the method to be tested

 interest = interest_calculator (p, r, n)

 #Assert - test what should be true

 self.assertEqual (result_should_be, interest)

 def test_yearly_interest (self):

 #Arrange - set up the test parameters

 p = 17000

 r = 3

 n = 365

 #Action - Call the method to be tested

 result_should_be = 270.36

 interest = interest_calculator (p, r, n)

 #Assert - test what should be true

 self.assertEqual (result_should_be, interest)

M09_SOME6349_01_GE_C09.indd 284 27/09/2020 14:06

 9.2 ■ Test automation 285

Program 9.2 shows two tests. In the first test (test_zeroprincipal), the sum
involved (the principal) is zero, so no interest should be payable. In the sec-
ond test (test_yearly_interest), the interest is calculated for a 365-day year.
Obviously, you need more tests to test this unit properly, such as tests for
leap years, tests to calculate the monthly interest that take the fact that
months are of different lengths into account and tests that check the interest
calculated is correct where the principal is partially or completely repaid dur-
ing the year.

It is good practice to structure automated tests in three parts:

1. Arrange You set up the system to run the test. This involves defining the
test parameters and, if necessary, mock objects that emulate the function-
ality of code that has not yet been developed.

2. Action You call the unit that is being tested with the test parameters.

3. Assert You make an assertion about what should hold if the unit being
tested has executed successfully. In Program 9.2, I use assertEqual, which
checks if its parameters are equal.

Once you set these up for one test, it is usually straightforward to reuse the
setup code in other tests of the same unit. Ideally, you should have only one
assertion in each test. If you have multiple assertions, you may not be able to
tell which of them has failed. This is not an unbreakable rule, however. For
example, if a function returns a composite value, then multiple assertions,
with an assertion for each element of the composite, may be the simplest
way to write the test. If you use multiple assertions in a test, you may include
additional code that indicates which of the assertions has failed.

If you use equivalence partitions to identify test inputs, you should have
several automated tests based on correct and incorrect inputs from each
partition. I illustrate this in Program 9.3.

This program shows the tests that I developed for the name-checking
function shown in Program 9.1. I deliberately include an extra test called
test_thiswillfail to show the output produced from a test where the tested
code does not behave as expected. To make the example program shorter,
I do not use explicit arrange/action/assert sections.

M09_SOME6349_01_GE_C09.indd 285 27/09/2020 14:06

286 Chapter 9 ■ Testing

Program 9.3 Executable tests for the namecheck function

import unittest

from RE_checker import namecheck

class TestNameCheck (unittest.TestCase):

 def test_alphaname (self):

 self.assertTrue (namecheck ('Sommerville'))

 def test_doublequote (self):

 self.assertFalse (namecheck ("Thisis'maliciouscode'"))

 def test_namestartswithhyphen (self):

 self.assertFalse (namecheck ('-Sommerville'))

 def test_namestartswithquote (self):

 self.assertFalse (namecheck ("'Reilly"))

 def test_nametoolong (self):

 self.assertFalse (namecheck

 ('Thisisalongstringwithmorethan40charactersfrombeginningtoend'))

 def test_nametooshort (self):

 self.assertFalse (namecheck ('S'))

 def test_namewithdigit (self):

 self.assertFalse (namecheck('C-3PO'))

 def test_namewithdoublehyphen (self):

 self.assertFalse (namecheck ('--badcode'))

 def test_namewithhyphen (self):

 self.assertTrue (namecheck ('Washington-Wilson'))

 def test_namewithinvalidchar (self):

 self.assertFalse (namecheck('Sommer_ville'))

 def test_namewithquote (self):

 self.assertTrue (namecheck ("O'Reilly"))

 def test_namewithspaces (self):

 self.assertFalse (namecheck ('Washington Wilson'))

 def test_shortname (self):

 self.assertTrue ('Sx')

 def test_thiswillfail (self):

 self.assertTrue (namecheck ("O Reilly"))

M09_SOME6349_01_GE_C09.indd 286 27/09/2020 14:06

 9.2 ■ Test automation 287

Program 9.4 Code to run unit tests from files

import unittest

loader = unittest.TestLoader()

#Find the test files in the current directory

tests = loader.discover('.')

#Specify the level of information provided by the test runner

testRunner = unittest.runner.TextTestRunner(verbosity=2)

testRunner.run(tests)

The testing framework provides a “test runner” that runs tests and reports
results. To use a test runner, you set up your tests in files that start with a
reserved name—in Python, the filename should start with ‘test_’. The test
runner finds all of the test files and runs them. I organize the unit tests by
including the tests for each unit in a separate file.

Program 9.4 shows some simple code for running a set of tests. Program 9.5
shows the output produced by the test runner when the tests shown in
 Program 9.3 are executed.

You can see that the failed test (test_thiswillfail) provides information
about the type of failure. Some test frameworks use visual indicators of suc-
cess. A red light means some tests have failed; a green light means all tests
have successfully executed.

When you are writing automated tests, you should keep them as simple as
possible. This is important because test code, like any other program, inevi-
tably includes bugs. You normally have thousands of tests for a product, so
there will inevitably be some tests that are themselves incorrect.

As the point of automated testing is to avoid the manual checking of test
outputs, you can’t realistically discover test errors by running the tests. There-
fore, you have to use two approaches to reduce the chances of test errors:

1. Make tests as simple as possible. The more complex the test, the more
likely that it will be buggy. The test condition should be immediately
obvious when reading the code.

2. Review all tests along with the code that they test. As part of the review
process (Section 9.5), someone apart from the test programmer should
check the tests for correctness.

M09_SOME6349_01_GE_C09.indd 287 27/09/2020 14:06

288 Chapter 9 ■ Testing

Program 9.5 Unit test results

test_alphaname (test_alltests_namechecker.TestNameCheck) . . . ok

test_doublequote (test_alltests_namechecker.TestNameCheck) . . . ok

test_namestartswithhyphen (test_alltests_namechecker.TestNameCheck) . . . ok

test_namestartswithquote (test_alltests_namechecker.TestNameCheck) . . . ok

test_nametoolong (test_alltests_namechecker.TestNameCheck) . . . ok

test_nametooshort (test_alltests_namechecker.TestNameCheck) . . . ok

test_namewithdigit (test_alltests_namechecker.TestNameCheck) . . . ok

test_namewithdoublehyphen (test_alltests_namechecker.TestNameCheck) . . . ok

test_namewithhyphen (test_alltests_namechecker.TestNameCheck) . . . ok

test_namewithinvalidchar (test_alltests_namechecker.TestNameCheck) . . . ok

test_namewithquote (test_alltests_namechecker.TestNameCheck) . . . ok

test_namewithspaces (test_alltests_namechecker.TestNameCheck) . . . ok

test_shortname (test_alltests_namechecker.TestNameCheck) . . . ok

test_thiswillfail (test_alltests_namechecker.TestNameCheck) . . . FAIL

==

FAIL: test_thiswillfail (test_alltests_namechecker.TestNameCheck)

--

Traceback (most recent call last):

 File “/Users/iansommerville/Dropbox/Python/Engineering Software

 Book/test_alltests_namechecker.py", line 46, in test_thiswillfail

 self.assertTrue (namecheck ("O Reilly"))

AssertionError: False is not true

--

Ran 14 tests in 0.001s

FAILED (failures=1)

Regression testing is the process of re-running previous tests when you
make a change to a system. This testing checks that the change has not had
unexpected side effects. The code change may have inadvertently broken
existing code, or it may reveal bugs that were undetected in earlier tests. If
you use automated tests, regression testing takes very little time. Therefore,
after you make any change to your code, even a very minor change, you
should always re-run all tests to make sure that everything continues to work
as expected.

M09_SOME6349_01_GE_C09.indd 288 27/09/2020 14:06

 9.2 ■ Test automation 289

Unit tests are the easiest to automate, so the majority of your tests should
be unit tests. Mike Cohn, who first proposed the test pyramid (Figure 9.5),
suggests that 70% of automated tests should be unit tests, 20% feature tests
(he called these service tests), and 10% system tests (UI tests).

The implementation of system features usually involves integrating
functional units into components and then integrating these components
to implement the feature. If you have good unit tests, you can be confident
that the individual functional units and components that implement the
feature will behave as you expect. However, as I explained, units may
make different assumptions or may interact unexpectedly, so you still need
feature tests.

Generally, users access features through the product’s graphical user inter-
face (GUI). However, GUI-based testing is expensive to automate so it is
best to use an alternative feature testing strategy. This involves designing
your product so that its features can be directly accessed through an API,
not just from the user interface. The feature tests can then access features
directly through the API without the need for direct user interaction through
the system’s GUI (Figure 9.6). Accessing features through an API has the
additional benefit that it is possible to re-implement the GUI without changing
the functional components of the software.

For example, a series of API calls may be required to implement a feature
that allows a user to share a document with another user by specifying their
email address. These calls collect the email address and the document identi-
fication information, check that the access permissions on the document allow
sharing, check that the specified email address is valid and is a registered
system user, and add the document to the sharing user’s workspace.

Figure 9.5 The test pyramid

Unit tests

Feature tests

System
tests

Increased automation
Reduced costs

M09_SOME6349_01_GE_C09.indd 289 27/09/2020 14:06

290 Chapter 9 ■ Testing

When these calls have been executed, a number of conditions should hold:

■■ The status of the document is “shared.”

■■ The list of users sharing the document includes the specified email address.

■■ There have been no deletions from the list of users sharing the document.

■■ The shared document is visible to all users in the sharing list.

You can’t usually implement automated feature tests using a single assertion.
You need multiple assertions to check that the feature has executed as expected.
Some feature test automation may be possible using a unit testing framework,
but sometimes you have to use a specialized feature testing framework.

System testing, which should follow feature testing, involves testing the
system as a surrogate user. You identify user activities, possibly from scenarios,
and then use the system to work through these activities. As a system tester,
you go through a process of selecting items from menus, making screen selec-
tions, inputting information from the keyboard, and so on. You have to make
careful observations and notes of how the system responds and of unexpected
system behavior. You are looking for interactions between features that cause
problems, sequences of actions that lead to system crashes, and other issues.

Manual system testing, when testers have to repeat sequences of actions, is
boring and prone to errors. In some cases, the timing of actions is important
and is practically impossible to repeat consistently. To avoid these problems,
testing tools have been developed to record a series of actions and automati-
cally replay them when a system is retested (Figure 9.7).

Figure 9.6 Feature testing through an API

Feature 3 Feature 4

Feature 1 Feature 2

Browser or mobile app interface

Feature
tests API

M09_SOME6349_01_GE_C09.indd 290 27/09/2020 14:06

 9.3 ■ Test-driven development 291

Figure 9.7 Interaction recording and playback

System being tested

System API

Interaction
session record

User action
recording

User action
playback

Browser or mobile app interface

Interaction recording tools record mouse movements and clicks, menu
selections, keyboard inputs, and so on. They save the interaction session and
can replay it, sending commands to the application and replicating them in the
user’s browser interface. These tools also provide scripting support so that you
can write and execute scenarios expressed as test scripts. This is particularly
useful for cross-browser testing, where you need to check that your software
works in the same way with different browsers.

As I said, automated testing is one of the most important developments
in software engineering, and I believe it has led to significant improvements
in program quality. The danger with automated testing, however, is automa-
tion bias. Automation bias means that you choose tests because they can be
automated, not because they are the best tests for the system. In reality, not all
tests can be automated. Subtle problems, such as timing problems and issues
caused by incorrect data dependencies, may only be detectable using manual
testing. Consequently, you should always plan to do some manual product
testing, where you simulate user sessions, before your product is released.

9.3 Test-driven development

Test-driven development (TDD) is an approach to program development that
is based on the general idea that you should write an executable test or tests
for code that you are writing before you write the code. TDD was introduced
by early users of the Extreme Programming agile method, but it can be used

M09_SOME6349_01_GE_C09.indd 291 27/09/2020 14:06

292 Chapter 9 ■ Testing

with any incremental development approach. Figure 9.8 is a model of the
test-driven development process.

Assume that you have identified some increment of functionality to be
implemented. The stages of the test-driven development process are shown
in Table 9.9.

Test-driven development relies on automated testing. Every time you add
some functionality, you develop a new test and add it to the test suite. All of
the tests in the test suite must pass before you move on to developing the next
increment.

The benefits of test-driven development are:

1. It is a systematic approach to testing in which tests are clearly linked to
sections of the program code. This means you can be confident that your
tests cover all of the code that has been developed and that there are no
untested code sections in the delivered code. In my view, this is the most
significant benefit of TDD.

Figure 9.8 Test-driven development

Write code stub that
will fail test

Run all
automated tests

Implement code that
should cause failing test to pass

Identify partial implementation
of functionality

Functionality
complete

Functionality
incomplete

Refactor code
if required

All tests pass

Identify new
functionality

Run all
automated tests

Test failure

Start

M09_SOME6349_01_GE_C09.indd 292 27/09/2020 14:06

 9.3 ■ Test-driven development 293

Activity Description

Identify partial implementation Break down the implementation of the
functionality required into smaller mini-
units. Choose one of these mini-units for
implementation.

Write mini-unit tests Write one or more automated tests for the mini-
unit that you have chosen for implementation.
The mini-unit should pass these tests if it is
properly implemented.

Write a code stub that will fail test Write incomplete code that will be called to
implement the mini-unit. You know this will fail.

Run all automated tests Run all existing automated tests. All previous
tests should pass. The test for the incomplete
code should fail.

Implement code that should
cause the failing test to pass

Write code to implement the mini-unit, which
should cause it to operate correctly.

Rerun all automated tests If any tests fail, your code is incorrect. Keep
working on it until all tests pass.

Refactor code if required If all tests pass, you can move on to
implementing the next mini-unit. If you see ways
of improving your code, you should do this before
the next stage of implementation.

Table 9.9 Stages of test-driven development

2. The tests act as a written specification for the program code. In principle
at least, it should be possible to understand what the program does by
reading the tests. I’m not convinced that test code is all you need for a
specification, but there is no doubt that tests help you understand the code
being tested.

3. Debugging is simplified because, when a program failure is observed, you
can immediately link this to the last increment of code that you added to
the system.

4. It is argued that TDD leads to simpler code, as programmers only write
code that’s necessary to pass tests. They don’t overengineer their code
with complex features that aren’t needed.

M09_SOME6349_01_GE_C09.indd 293 27/09/2020 14:06

294 Chapter 9 ■ Testing

Test-driven development and automated testing using executable tests were
developed around the same time. Some people who write about the benefits of
TDD conflate it and automated testing. Consequently, you may see regression
testing suggested as a benefit of TDD, whereas this is actually a benefit of
automated testing, whether or not these tests were developed before or after
the code. The same is true for refactoring tests that check that code refactoring
has not introduced new bugs into the code.

Test-driven development works best for the development of individ-
ual program units; it is more difficult to apply to system testing. Even
the strongest advocates of TDD accept that it is challenging to use this
approach when you are developing and testing systems with graphical user
interfaces.

Many programmers have enthusiastically adopted TDD and are happy with
this approach. They claim that it is a more productive way to develop software
and that the resulting software has fewer bugs than it would have without
TDD. They also claim that the developed code is better structured and easier
to understand. There have been several experiments to test whether this is
actually the case. These experiments were inconclusive.

However, there are divided opinions in the software engineering com-
munity about the value of TDD. After experimenting with the approach for
some time, I wrote a blog post about why I had decided to give up on it.2
TDD didn’t work for me because I spent more time thinking about the tests
than about the program, and I didn’t think that was a good thing.

My post received a huge number of comments, which were roughly evenly
split. Adherents of TDD, as I anticipated, simply told me that I wasn’t doing
it right. Others strongly agreed with what I said about the problems with the
approach. I’ve summarized my reasons for not using TDD in Table 9.10. My
view is that TDD suits some people psychologically better than others. It
didn’t really work for me, but it might work for you.

As I say in my blog post, I think it is sensible to be pragmatic about TDD.
Sometimes it is very helpful to write tests first, as it helps you clarify your
understanding of what the program should do. On other occasions, it is faster
and easier to develop that understanding by writing code first.

2http://iansommerville.com/systems-software-and-technology/giving-up-on-test-first-
development/

M09_SOME6349_01_GE_C09.indd 294 27/09/2020 14:06

http://iansommerville.com/systems-software-and-technology/giving-up-on-test-first-development/
http://iansommerville.com/systems-software-and-technology/giving-up-on-test-first-development/

 9.4 ■ Security testing 295

9.4 Security testing

The goals of program testing are to find bugs and to provide convincing evi-
dence that the program being tested does what it is supposed to do. Security
testing has comparable goals. It aims to find vulnerabilities that an attacker
may exploit and to provide convincing evidence that the system is sufficiently
secure. The tests should demonstrate that the system can resist attacks on its
availability, attacks that try to inject malware, and attacks that try to corrupt
or steal users’ data and identity.

Discovering vulnerabilities is much harder than finding bugs. Functional
tests to discover bugs are driven by an understanding of what the software
should do. Your tests only have to show that your software is operating as
expected. However, you face three challenges in vulnerability testing:

Reason Explanation

TDD discourages radical program
change.

I found that I was reluctant to make
refactoring decisions that I knew would cause
many tests to fail. I tended to avoid radical
program change for this reason.

I focused on the tests rather than the
problem I was trying to solve.

A basic principle of TDD is that your design
should be driven by the tests you have
written. I found that I was unconsciously
redefining the problem I was trying to solve
to make it easier to write tests. This meant
that I sometimes didn’t implement important
checks, because it was difficult to write tests
in advance of their implementation.

I spent too much time thinking about
the implementation details rather
than the programming problem.

Sometimes when programming, it is best
to step back and look at the program as a
whole rather than focusing on implementation
details. TDD encourages a focus on details
that might cause tests to pass or fail rather
than the overall structure of the program.

It is hard to write “bad data” tests. Many problems involve dealing with messy
and incomplete data. It is practically
impossible to anticipate all of the data
problems that might arise and write tests
for these in advance. You might argue that
you should simply reject bad data, but this is
sometimes impractical.

Table 9.10 My reasons for not using TDD

M09_SOME6349_01_GE_C09.indd 295 27/09/2020 14:06

296 Chapter 9 ■ Testing

1. When you are testing for vulnerabilities, you are testing for something that
the software should not do, so there are an infinite number of possible tests.

2. Vulbenerabilities are often obscure and lurk in rarely used code, so they
may not be revealed by normal functional tests.

3. Software products depend on a software stack that includes operating
systems, libraries, databases, browsers, and so on. These may contain vul-
nerabilities that affect your software. These vulnerabilities may change
as new versions of software in the stack are released.

Comprehensive security testing requires specialist knowledge of software
vulnerabilities and approaches to testing that can find these vulnerabilities.
Product development teams don’t normally have the experience required for
this security testing, so ideally you should involve external specialists in secu-
rity testing. Many companies offer penetration testing (pen testing) services,
where they simulate attacks on your software and use their ingenuity to find
ways to break its security. Independent security testing is expensive, however,
and may not be affordable by startup product companies.

One practical way to organize security testing is to adopt a risk-based
approach, where you identify the common risks and then develop tests to
demonstrate that the system protects itself from these risks. You may also
use automated tools that scan your system to check for known vulnerabilities,
such as unused HTTP ports being left open.

In a risk-based approach, you start by identifying the main security risks to
your product. To identify these risks, you use knowledge of possible attacks,
known vulnerabilities, and security problems. Table 9.11 shows examples of
the risks that you might test for.

Unauthorized attacker gains access to a system using authorized credentials.

Authorized individual accesses resources that are forbidden to that person.

Authentication system fails to detect unauthorized attacker.

Attacker gains access to database using SQL poisoning attack.

Improper management of HTTP sessions.

HTTP session cookies are revealed to an attacker.

Confidential data are unencrypted.

Encryption keys are leaked to potential attackers.

Table 9.11 Examples of security risks

M09_SOME6349_01_GE_C09.indd 296 27/09/2020 14:06

 9.4 ■ Security testing 297

Based on the risks that have been identified, you then design tests and
checks to see if the system is vulnerable. It may be possible to construct auto-
mated tests for some of these checks, but others inevitably involve manual
checking of the system’s behavior and its files.

Once you have identified security risks, you then analyze them to assess
how they might arise. For example, for the first risk in Table 9.11 (unauthor-
ized attacker) there are several possibilities:

1. The user has set weak passwords that an attacker can guess.

2. The system’s password file has been stolen and an attacker has discovered
the passwords.

3. The user has not set up two-factor authentication.

4. An attacker has discovered the credentials of a legitimate user through
social engineering techniques.

You can then develop tests to check some of these possibilities. For exam-
ple, you might run a test to check that the code that allows users to set their
passwords always checks the strength of the passwords. It should not allow
users to set passwords that are easy to crack. You may also test that users are
always prompted to set up two-factor authentication.

The reliable programming techniques that I explained in Chapter 8 provide
some protection against these risks. However, this does not mean that you do
not need security testing. Developers might have made mistakes. For example,
they might have forgotten to check the validity of some inputs or forgotten to
implement a password strength check when a password is changed.

As well as adopting a risk-based approach to security testing, you can use
basic tests that check whether or not common programming mistakes have
occurred. These might test that sessions are properly closed or that inputs have
been validated. An example of a basic test that checks for incorrect session
management is a simple login test:

1. Log into a web application.

2. Navigate to a different website.

3. Click the BACK button of the browser

When you navigate away from a secure application, the software should auto-
matically log you out so that you have to re-authenticate if you go back to that
application. Otherwise, if someone gets access to your computer, they could use

M09_SOME6349_01_GE_C09.indd 297 27/09/2020 14:06

298 Chapter 9 ■ Testing

the BACK button to get into your supposedly secure account. Most types of secu-
rity testing involve complex steps and outside-the-box thinking, but sometimes
simple tests, like this one, help to expose the most severe security risks.

You need to think differently if you are to be a successful security tester.
When you are testing the features of a system, it is sensible to focus on those
features that are most used and to test the “normal” usage of these features.
However, when you are testing the security of a system, you need to think
like an attacker rather than a normal end-user.

This means that you deliberately try to do the wrong thing because system
vulnerabilities often lurk in rarely used code that handles exceptional situations.
You may repeat actions several times because sometimes this leads to different
behavior. A widely publicized Apple security bug was revealed when a tester
tried logging in with no password several times. On the fifth or sixth attempt,
access was allowed. My guess is that there was some code included to make it
easier to test the system without remembering passwords and then the develop-
ers forgot to remove this code before they shipped the system.

9.5 Code reviews

Testing is the most widely used technique for finding bugs in programs. How-
ever, it suffers from three fundamental problems:

1. You can only test code against your understanding of what that code
should do. If you have misunderstood the purpose of the code, then this
will be reflected in both the code and the tests.

2. Tests are sometimes difficult to design, with the consequence that the
tests you write may not provide coverage of all the code you have writ-
ten. This is most often a problem with code that handles rarely occurring
errors and exceptions. One of the arguments for TDD is that it avoids this
problem. You always have code associated with each test. However, TDD
simply changes this problem. Instead of test incompleteness, you may
have code incompleteness because you don’t think about rare exceptions.

3. Testing doesn’t really tell you anything about other attributes of a pro-
gram, such as its readability, structure, or evolvability or whether it is
interacting efficiently with its environment.

To reduce the effects of these problems, many software companies insist
that all code has to go through a process of code review before it is inte-
grated into the product codebase. Code reviews complement testing. They are

M09_SOME6349_01_GE_C09.indd 298 27/09/2020 14:06

 9.5 ■ Code reviews 299

effective in finding bugs that arise through misunderstandings and bugs that
may arise only when unusual sequences of code are executed.

Figure 9.9 shows the activities involved in the code review process. Details
of the process vary across companies, depending on their culture (more or less
formal) and their normal way of working. Table 9.12 describes each of these
activities in more detail.

Activity Description

Set up review The programmer contacts a reviewer and arranges a review
date.

Prepare code The programmer collects the code and tests for review and
annotates them with information for the reviewer about the
intended purpose of the code and tests.

Distribute code/tests The programmer sends code and tests to the reviewer.

Check code The reviewer systematically checks the code and tests against
their understanding of what they are supposed to do.

Write review report The reviewer annotates the code and tests with a report of the
issues to be discussed at the review meeting.

Discussion The reviewer and programmer discuss the issues and agree on
the actions to resolve these.

Make to-do list The programmer documents the outcome of the review as a
to-do list and shares this with the reviewer.

Make code changes The programmer modifies the code and tests to address the
issues raised in the review.

Table 9.12 Code review activities

Figure 9.9 Code reviews

Review preparation

Programmer

Reviewer

Programmer

Discussion

Set up
review

Prepare
code

Distribute
code/tests

Write review
report

Code checking

Prepare
to-do list

Make code
changes

Review Follow-up

Reviewer

Check
code

Programmer

M09_SOME6349_01_GE_C09.indd 299 27/09/2020 14:06

300 Chapter 9 ■ Testing

Code reviews involve one or more people examining the code to check for
errors and anomalies and discussing issues with the developer. If problems
are identified, it is the developer’s responsibility to change the code to fix the
problems.

The general idea of code reviews was first publicized in the 1970s under the
name “program inspections.” Program inspections involved a team of four to
six people examining the code and preparing a formal report on the problems
they discovered. Inspections are very effective in discovering programming
errors, but because so many people are involved, they are expensive and time-
consuming to organize.

Consequently, a lightweight approach is now the norm for code reviews. A
single code reviewer is used, who may be part of the same development team
or may work in a related area. As well as checking the code under review, the
reviewer should also look at the automated tests that have been developed.
The reviewer should check that the test set is complete and that the tests are
consistent with their understanding of the purpose of the code.

Code reviews should be approached positively by both the programmer and
the reviewer. The reviewer should not implicitly or explicitly criticize the pro-
grammer’s ability and should not see the review as a way to show how clever
they are. You may collect metrics, such as the number of discovered defects,
from code reviews. These should be used to improve the review process rather
than to evaluate the developers involved.

Apart from the obvious benefit of finding bugs, code reviews are impor-
tant for sharing knowledge of a codebase. If all members of the team are
involved in reviewing and programming, this means that if people leave or
are unavailable, then it is easier for others to pick up their work and continue
its development.

Along with looking for bugs and misunderstandings in the code, the
reviewer may comment on the readability and understandability of the code.
If your company has a coding standard, then the review should check confor-
mance to this standard. However, I think it is best to use an automated tool for
standards checking and to use it before submitting code for review.

Program inspections and code reviews usually involve a meeting between
the developer and the code reviewers. I think this is the most effective
way to organize a review. Face-to-face discussions are the quickest way to
resolve misunderstandings. In companies where teams may not all work in
the same place, however, the review may involve a phone discussion about
the code.

As a general rule, you should not attempt to do too much in a review. It
should last around an hour, so that between 200 and 400 lines of code can

M09_SOME6349_01_GE_C09.indd 300 27/09/2020 14:06

 9.5 ■ Code reviews 301

be reviewed in a single session. Because people make similar mistakes, it is
usually effective to prepare a checklist for reviewers to use while checking the
code. Checklists may contain a mix of general items and specific items based
on characteristic errors that can occur in the programming language that is
used. You can find checklists for most programming languages on the web.
Table 9.13 shows part of a checklist for reviewing Python code.

Several code review tools are now available to support the process. Using
these tools, both the programmer and the reviewer can annotate the code being
reviewed and document the review process by creating to-do lists. These
review tools can be set up so that whenever a programmer submits code to a
repository such as Github, a code review is automatically set up. Review tools
may also integrate with an issue tracking system, messaging systems such as
Slack, and voice communication systems such as Skype.

Review check Rationale

Are meaningful variables and function
names used? (General)

Meaningful names make a program easier
to read and understand.

Have all data errors been considered
and tests developed for these?
(General)

It is easy to write tests for the most
common cases, but it is equally important
to check that the program won’t fail when
presented with incorrect data.

Are all exceptions explicitly handled?
(General)

Unhandled exceptions may cause a system
to crash.

Are default function parameters used?
(Python)

Python allows default values to be set for
function parameters when the function is
defined. This often leads to errors when
programmers forget about or misuse them.

Are types used consistently? (Python) Python does not have compile-time type
checking, so it is possible to assign values
of different types to the same variable. This
is best avoided, but if used, it should be
justified.

Is the indentation level correct?
(Python)

Python uses indentation rather than explicit
brackets after conditional statements to
indicate the code to be executed if the
condition is true or false. If the code is not
properly indented in nested conditionals,
this may mean that incorrect code is
executed.

Table 9.13 Part of a checklist for a Python code review

M09_SOME6349_01_GE_C09.indd 301 27/09/2020 14:06

302 Chapter 9 ■ Testing

K E Y P O I N T S

■■ The aim of program testing is to find bugs and to show that a program does what its
developers expect it to do.

■■ Four types of testing that are relevant to software products are functional testing, user
testing, load and performance testing, and security testing.

■■ Unit testing involves testing program units, such as functions or class methods, that have a
single responsibility. Feature testing focuses on testing individual system features. System
testing tests the system as a whole to check for unwanted interactions between features and
between the system and its environment.

■■ Identifying equivalence partitions, in which all inputs have the same characteristics, and
choosing test inputs at the boundaries of these partitions are an effective way of finding
bugs in a program.

■■ User stories may be used as a basis for deriving feature tests.

■■ Test automation is based on the idea that tests should be executable. You develop a set of
executable tests and run these each time you make a change to a system.

■■ The structure of an automated unit test should be arrange-action-assert. You set up the test
parameters, call the function or method being tested, and make an assertion about what
should be true after the action has been completed.

■■ Test-driven development is an approach in which executable tests are written before the
code. Code is then developed to pass the tests.

■■ A disadvantage of test-driven development is that programmers focus on the details of passing
tests rather than considering the broader structure of their code and algorithms used.

■■ Security testing may be risk-driven, with a list of security risks used to identify tests that may
reveal system vulnerabilities.

■■ Program reviews are an effective supplement to testing. They involve people checking the
code to comment on its quality and to look for bugs.

R E C O M M E N D E D R E A D I N G

“An Overview of Software Testing” This good article goes into more detail about different types of
software testing. (M. Parker, 2015)

http://openconcept.ca/blog/mparker/overview-software-testing

“How to Perform Software Product Testing” My coverage of testing focuses on testing during the
initial development of a product. This interesting article discusses the broader issues of testing over
a product’s life cycle, from introduction to product retirement. (Software Testing Help, 2017)

M09_SOME6349_01_GE_C09.indd 302 27/09/2020 14:06

http://openconcept.ca/blog/mparker/overview-software-testing

 Exercises 303

http://www.softwaretestinghelp.com/how-perform-software-product-testing/

“Why Most Unit Testing Is Waste” This view is contrary to the conventional wisdom that most
tests should be automated unit tests. It is written by an author who was one of the original
authors of the Design Patterns book. He argues that integration and system tests deliver real
value, whereas a big proportion of unit tests tell us nothing that we don’t know about the code. I
don’t agree with everything the author says, but I do agree with his general premise that thinking
is more valuable than testing. (J. O. Coplien, 2014)

https://rbcs-us.com/documents/Why-Most-Unit-Testing-is-Waste.pdf

“The Art of Agile Development: Test-Driven Development” This is an online version of a chapter
from the book The Art of Agile Development, a good description of test-driven development that
goes into much more detail than I do here. Examples are in Java. (J. Shore, 2010)

http://www.jamesshore.com/Agile-Book/test_driven_development.html

“Introducing BDD” Behavior-driven design is an evolution of test-driven design where
the focus of the testing process is the expected behavior of the software being tested.
A stylized language can be used to describe behavior and tests derived from this description.
I have never tried this approach, but it seems to get around some of the problems with TDD.
(D. North, 2006)

https://dannorth.net/introducing-bdd/

“Best Practices for Code Review” This is a nice summary of good review practice from a vendor of
Collaborator, a code review tool. The same site has a number of blog posts that expand on these
practices and provide review checklists. (SmartBear, 2018)

https://smartbear.com/learn/code-review/best-practices-for-peer-code-review/

P R E S E N T A T I O N S , V I D E O S , A N D L I N K S

https://iansommerville.com/engineering-software-products/testing

E X E R C I S E S

 9.1. Explain why you can never be completely confident that program testing has revealed all
the faults in a software product.

 9.2. What are the important distinctions between unit testing and feature testing?

M09_SOME6349_01_GE_C09.indd 303 27/09/2020 14:06

http://www.softwaretestinghelp.com/how-perform-software-product-testing/
https://rbcs-us.com/documents/Why-Most-Unit-Testing-is-Waste.pdf
http://www.jamesshore.com/Agile-Book/test_driven_development.html
https://dannorth.net/introducing-bdd/
https://smartbear.com/learn/code-review/best-practices-for-peer-code-review/
https://iansommerville.com/engineering-software-products/testing

304 Chapter 9 ■ Testing

 9.3. Imagine that your software includes a feature that can automatically create a contents
list for a document or book. Suggest tests that you might develop to test this feature. It is
described by the following user stories:

(a) As a user, I want to automatically create a contents list for my document that includes
all of the headings that I have marked up in my text.

(b) As a user, I want to be able to identify elements of a contents list and mark these up at
different levels.

 For simplicity, I have left out stories concerned with formatting the contents list.

 9.4. Table 9.14 is a simplified version of the scenario I used in Chapter 3 for the iLearn system
(see Table 3.6). Suggest six end-to-end tests that could be used to test the features of the
system in this scenario.

 9.5. Explain why it is easier to develop automated unit tests than automated feature tests.

 9.6. Using any programming language that you know, write a function/method that accepts
a list of integers as a parameter and returns the sum of the numbers in that list. Using an
appropriate test framework, write automated tests to test that function. Make sure you
test with both incorrect and correct data.

 9.7. What is regression testing, and why is it important? Explain why automated testing makes
regression testing straightforward.

 9.8. Explain why it is essential to have a refactoring stage in the test-driven development
process.

 9.9. Explain why software security testing is more difficult than functional testing.

 9.10. Give three reasons why you should use code reviews as well as testing when you are
developing software.

Emma is a history teacher who is arranging a school trip to the historic battlefields in
northern France. She wants to set up a “battlefields group” where the students who are
attending the trip can share their research about the places they are visiting as well as
their pictures and thoughts about the visit.

Emma logs in to a “group management” app, which recognizes her role and school from
her identity information and creates a new group. The system prompts her for her year
(S3) and subject (history) and automatically populates the new group with all S3 students
who are studying history. She selects the students going on the trip and adds her teacher
colleagues, Jamie and Claire, to the group.

She names the group and confirms the group creation. This sets up an icon on her iLearn
screen to represent the group, creates an email alias for the group, and asks Emma if she
wishes to share the group. She shares access to the group with everyone in the group,
which means that they also see the icon on their screen. To avoid getting too many
emails from students, she restricts sharing of the email alias to Jamie and Claire.

Table 9.14 Setting up a group email

M09_SOME6349_01_GE_C09.indd 304 27/09/2020 14:06

DevOps and Code Management

The ultimate goal of software product development is to release a product to
customers. Mobile products are usually released through an app store; prod-
ucts for computers and servers may be made available for downloading from
the vendor’s website or an app store. Increasingly, however, software products
are made available as a cloud-based service, so there is no need for customer
downloads.

After you have released your product, you have to provide some customer
support. This may be as little as a list of FAQs on a web page or as much as
a dedicated help desk that users may contact. You may also collect problem
reports from customers to help you decide what changes to make in later
releases of your product.

Traditionally, separate teams were responsible for software development,
software release, and software support (Figure 10.1). The development team
passed a “final” version of the software to a release team. That team then
built a release version, tested it, and prepared release documentation before
releasing the software to customers. A third team provided customer support.
The original development team was sometimes responsible for implementing
software changes. Alternatively, the software may have been maintained by
a separate maintenance team.

In these processes, communication delays between the groups were inevi-
table. Development and operations engineers used different tools, had differ-
ent skill sets, and often didn’t understand the other’s problems. Even when an
urgent bug or security vulnerability was identified, it could take several days
for a new release to be prepared and pushed to customers.

Many companies still use this traditional model of development, release,
and support. However, more and more companies are using an alternative

10

M10_SOME6349_01_GE_C10.indd 305 27/09/2020 14:07

approach called DevOps. DevOps (development + operations) integrates
development, deployment, and support, with a single team responsible for
all of these activities (Figure 10.2). Three factors led to the development and
widespread adoption of DevOps:

1. Agile software engineering reduced the development time for software,
but the traditional release process introduced a bottleneck between devel-
opment and deployment. Agile enthusiasts started looking for a way
around this problem.

2. Amazon re-engineered their software around services and introduced an
approach in which a service was both developed and supported by the

Figure 10.1 Development, release, and support

Development

Tested software
ready for release

Release

Deployed software
ready for use

Support

Problem and bug
reports

Figure 10.2 DevOps

Development

Deployment Support

Multi-skilled DevOps team

306 Chapter 10 ■ DevOps and Code Management

M10_SOME6349_01_GE_C10.indd 306 27/09/2020 14:07

same team. Amazon’s claim that this led to significant improvements in
reliability was widely publicized.

3. It became possible to release software as a service, running on a public
or private cloud. Software products did not have to be released to users
on physical media or downloads.

There is no simple definition of DevOps. Companies interpret the integra-
tion of development and operations differently, depending on their culture
and the type of software they are developing. However, the three fundamental
principles listed in Table 10.1 are the basis for effective DevOps.

Likewise, the specific benefits of using DevOps depend on a company’s
technology, organization, and culture. However, almost all adopters of
DevOps report that important benefits to them are a faster deployment cycle
for their software, reduced risk of major failures or outages, faster problem
resolution, and more stable and productive teams. I explain why these are
universal benefits of DevOps in Table 10.2.

For software product companies, all aspects of DevOps are relevant if
your product is delivered as a cloud-based service. If your product is released
through an app store or through your website, DevOps is still relevant. Some
processes, however, such as continuous delivery, have to be modified for
downloaded software.

In this chapter, I focus on automation and measurement, the technical
aspects of DevOps. However, many people argue that without the right culture,
the full potential of DevOps cannot be realized. Historically, there has often
been a culture of mistrust between development and operations engineers.

Principle Explanation

Everyone is responsible for
everything.

All team members have joint responsibility
for developing, delivering, and supporting the
software.

Everything that can be automated
should be automated.

All activities involved in testing, deployment,
and support should be automated if it is possible
to do so. There should be mimimal manual
involvement in deploying software.

Measure first, change later. DevOps should be driven by a measurement
program where you collect data about the
system and its operation. You then use the
collected data to inform decisions about
changing DevOps processes and tools.

Table 10.1 DevOps principles

 Chapter 10 ■ DevOps and Code Management 307

M10_SOME6349_01_GE_C10.indd 307 27/09/2020 14:07

308 Chapter 10 ■ DevOps and Code Management

DevOps aims to change this by creating a single team that is responsible
for both development and operations. Developers also take responsibility for
installing and maintaining their software.

Creating a DevOps team means bringing together a number of dif-
ferent skill sets, which may include software engineering, UX design,
security engineering, infrastructure engineering, and customer interac-
tion. Unfortunately, some software engineers consider their work to be
more challenging and important than the work of others. They don’t try
to understand what team members with different skills do or the problems
they face. This leads to tensions as members try to establish a “pecking
order” of importance.

A successful DevOps team has a culture of mutual respect and sharing.
Everyone on the team should be involved in Scrums and other team meetings.
Team members should be encouraged to share their expertise with others and
to learn new skills. Developers should support the software services that they
have developed. If a service fails over a weekend, that developer is respon-
sible for getting it up and running again. If that person is unavailable, how-
ever, other team members should take over rather than wait for their return.
The team priority should be to fix failures as quickly as possible, rather than
to assign blame to a team member or subgroup.

Benefit Explanation

Faster deployment Software can be deployed to production more
quickly because communication delays between
the people involved in the process are dramatically
reduced.

Reduced risk The increment of functionality in each release is
small so there is less chance of feature interactions
and other changes that cause system failures and
outages.

Faster repair DevOps teams work together to get the software
up and running again as soon as possible. There is
no need to discover which team was responsible for
the problem and to wait for them to fix it.

More productive teams DevOps teams are happier and more productive
than the teams involved in the separate activities.
Because team members are happier, they are less
likely to leave to find jobs elsewhere.

Table 10.2 Benefits of DevOps

M10_SOME6349_01_GE_C10.indd 308 27/09/2020 14:07

 10.1 ■ Code management 309

10.1 Code management

DevOps depends on the source code management system that is used by the
entire team. However, source code management predates DevOps by almost
40 years. The need to manage an evolving codebase was recognized in the
early 1970s. Whether or not your team adopts DevOps, managing source code
is essential for all types of software engineering.

During the development of a software product, the development team will
probably create tens of thousands of lines of code and automated tests. These
will be organized into hundreds of files. Dozens of libraries may be used, and
several different programs may be involved in creating and running the code.
Without automated support, it is impossible for developers to keep track of
the changes made to the software.

Code management1 is a set of software-supported practices used to manage
an evolving codebase. You need code management to ensure that changes made
by different developers do not interfere with each other and to create different
product versions. Code management tools make it easy to create an executable
product from its source code files and to run automated tests on that product.

To illustrate why code management is important, consider the scenario
shown in Table 10.3. If a code management system had been used, it would

1Code management was originally called “software configuration management” and this term
is still widely used. However, “configuration management” is now commonly used to refer to
the management of a server infrastructure.

Alice and Bob worked for a company called FinanceMadeSimple and were team members
involved in developing a personal finance product. Alice discovered a bug in a module
called TaxReturnPreparation. The bug was that a tax return was reported as filed but
sometimes it was not actually sent to the tax office. She edited the module to fix the
bug. Bob was working on the user interface for the system and was also working on
TaxReturnPreparation. Unfortunately, he took a copy before Alice had fixed the bug and,
after making his changes, he saved the module. This overwrote Alice’s changes, but she
was not aware of this.

The product tests did not reveal the bug, as it was an intermittent failure that
depended on the sections of the tax return form that had been completed. The product
was launched with the bug. For most users, everything worked OK. However, for a small
number of users, their tax returns were not filed and they were fined by the revenue
service. The subsequent investigation showed the software company was negligent. This
was widely publicized and, as well as a fine from the tax authorities, users lost confidence
in the software. Many switched to a rival product. FinanceMadeSimple failed and both Bob
and Alice lost their jobs.

Table 10.3 A code management problem

M10_SOME6349_01_GE_C10.indd 309 27/09/2020 14:07

310 Chapter 10 ■ DevOps and Code Management

have detected the conflict between Bob’s and Alice’s changes, the bug would
have been fixed, and the company could have continued in business.

Source code management, combined with automated system building, is
critical for professional software engineering. In companies that use DevOps,
a modern code management system is a fundamental requirement for “auto-
mating everything.” Not only does it store the project code that is ultimately
deployed, but it also stores all other information that is used in DevOps pro-
cesses. DevOps automation and measurement tools all interact with the code
management system (Figure 10.3).

I cover DevOps automation and measurement tools in more detail in Sec-
tions 10.2 and 10.3.

10.1.1 Fundamentals of source code management

Source code management systems are designed to manage an evolving project
codebase to allow different versions of components and entire systems to be
stored and retrieved. Developers can work in parallel without interfering with
each other and they can integrate their work with that from other developers.

Figure 10.3 Code management and DevOps

Branching and merging

Save and
retrieve
versions

DevOps automation

Continuous
integration

Code management system

Continuous
deployment

Continuous
delivery

Infrastructure
as code

DevOps measurement

Report
generation

Data
analysis

Data
collection

Code
repository

Transfer code to/from developer’s filestore

Recover
version
information

M10_SOME6349_01_GE_C10.indd 310 27/09/2020 14:07

 10.1 ■ Code management 311

The code management system provides a set of features that support four
general areas:

1. Code transfer Developers take code into their personal file store to work
on it; then they return it to the shared code management system.

2. Version storage and retrieval Files may be stored in several different
versions, and specific versions of these files can be retrieved.

3. Merging and branching Parallel development branches may be cre-
ated for concurrent working. Changes made by developers in different
branches may be merged.

4. Version information Information about the different versions maintained
in the system may be stored and retrieved.

All source code management systems have the general form shown in
Figure 10.3, with a shared repository and a set of features to manage the files
in that repository:

1. All source code files and file versions are stored in the repository, as are
other artifacts such as configuration files, build scripts, shared libraries,
and versions of tools used. The repository includes a database of infor-
mation about the stored files, such as version information, information
about who has changed the files, what changes were made at what times,
and so on.

2. The source code management features transfer files to and from the repos-
itory and update the information about the different versions of files and
their relationships. Specific versions of files and information about these
versions can always be retrieved from the repository.

Several open-source and proprietary-source code management systems are
currently used. All of them provide the features shown in Table 10.4.

When files are added, the source code management system assigns a unique
identifier to each file. This is used to name stored files; the unique name
means that managed files can never be overwritten. Other identifying attri-
butes may be added to the controlled file so that it can be retrieved by name
or by using these attributes. Any version of a file can be retrieved from the
system. When a change is made to a file and it is submitted to the system,
the submitter must add an identifying string that explains the changes made.
This helps developers understand why the new version of the file was created.

M10_SOME6349_01_GE_C10.indd 311 27/09/2020 14:07

312 Chapter 10 ■ DevOps and Code Management

Code management systems support independent development when sev-
eral developers work on the same file simultaneously. They submit changes
to the code management system, which creates a new version of the file for
each submission. This avoids the file overwriting problem that I described in
Table 10.3. It is common for different projects to share components, so code
management systems also provide some form of project support. Project sup-
port features allow users to retrieve all the versions of files that are relevant
to the project that they are working on.

High storage costs were an important driver for the development of code man-
agement systems in the 1970s. Rather than storing every version of a file, storage
compaction reduced the space required for the set of files being managed. These
systems stored a version as a list of changes from a master version of a file. The
version file could be recreated by applying these changes to the master file. If
several versions of a file had been created, it was relatively slow to recreate a
specific version, as this involved retrieving and applying several sets of code edits.

As storage is now cheap and plentiful, modern code management systems
are less concerned with optimizing storage. They use faster mechanisms for
version storage and retrieval.

Early source code management systems had a centralized repository archi-
tecture that requires users to check in and check out files (Figure 10.4). If a
user checks out a file, anyone else who tries to check out that file is warned

Feature Description

Version and release
identification

Managed versions of a code file are uniquely identified
when they are submitted to the system and can
be retrieved using their identifier and other file
attributes.

Change history recording The reasons changes to a code file have been made
are recorded and maintained.

Independent development Several developers can work on the same code file
at the same time. When this is submitted to the code
management system, a new version is created so that
files are never overwritten by later changes.

Project support All of the files associated with a project may be
checked out at the same time. There is no need to
check out files one at a time.

Storage management The code management system includes efficient
storage mechanisms so that it doesn’t keep multiple
copies of files that have only small differences.

Table 10.4 Features of source code management systems

M10_SOME6349_01_GE_C10.indd 312 27/09/2020 14:07

 10.1 ■ Code management 313

that it is already in use. When the edited file is checked in, a new version of
that file is created.

In Figure 10.4, both Alice and Bob have checked out the files they
need from the repository. Both have checked out B1.1, C1.1, and Z1.0.
These are marked in the repository as shared. When Alice and Bob check
in these files, the source code management system ensures that file copies
do not conflict.

This centralized architecture was the dominant model for code management
systems for more than 30 years and is still used in some code management sys-
tems. Subversion is the best-known, open-source code management product that
is based around a centralized repository. However, distributed code management
systems are now the most commonly used code management systems for soft-
ware product development. In these systems, the repository is replicated on each
developer’s computer.

In 2005, Linus Torvalds, the developer of Linux, revolutionized source
code management by developing a distributed version control system (DVCS)
called Git to manage the code of the Linux kernel. Git was geared to support-
ing large-scale open-source development. It took advantage of the fact that
storage costs had fallen to such an extent that most users did not have to be
concerned with local storage management. Instead of only keeping the copies
of the files that users are working on, Git maintains a clone of the repository
on every user’s computer (Figure 10.5).

A fundamental concept in Git is the “master branch,” which is the current
master version of the software that the team is working on. You create new
versions by creating a new branch, as I explain below. In Figure 10.5, you can

Figure 10.4 Centralized source code management

Alice Bob

check_incheck_out

A1.0

A1.1 B1.1

B1.0 C1.0

C1.1 X1.1

X1.0 Y1.0

Y1.1 Q1.0

P1.0

C1.2

Z1.0

R1.0

A1.1 B1.1 C1.1

C1.2

X1.0

Y1.1

B1.1 Z1.0

C1.1

check_incheck_out

Z1.0

Code management server

M10_SOME6349_01_GE_C10.indd 313 27/09/2020 14:07

314 Chapter 10 ■ DevOps and Code Management

see that two branches have been created in addition to the master branch. When
users request a repository clone, they get a copy of the master branch that they
can work on independently.

Git and other distributed code management systems have several advan-
tages over centralized systems:

1. Resilience Everyone working on a project has their own copy of the
repository. If the shared repository is damaged or subjected to a cyber-
attack, work can continue, and the clones can be used to restore the
shared repository. People can work offline if they don’t have a network
connection.

2. Speed Committing changes to the repository is a fast, local operation and
does not need data to be transferred over the network.

Figure 10.5 Repository cloning in Git

Shared Git repository

Master branch

Commit and branch information

Branch 1

Branch 2

F7 F9 F21

F2 F3

Clone

Master branch

Commit and branch information

F1 F2 F3 F4 F5 F6
F7 F8 F9 F10 F11
F12 F13 F14 F15
F16 F17 F18 F19
F20 F21 F22 F23
F24 F25 F26 F27

F1 F2 F3 F4 F5 F6
F7 F8 F9 F10 F11
F12 F13 F14 F15
F16 F17 F18 F19
F20 F21 F22 F23
F24 F25 F26 F27

Alice’s repository

M10_SOME6349_01_GE_C10.indd 314 27/09/2020 14:07

 10.1 ■ Code management 315

3. Flexibility Local experimentation is much simpler. Developers can safely
try different approaches without exposing their experiments to other proj-
ect members. With a centralized system, this may only be possible by
working outside the code management system.

Most software product companies now use Git for code management. For
teamwork, Git is organized around the notion of a shared project repository and
private clones of that repository held on each developer’s computer (Figure 10.6).
A company may use its own server to run the project repository. However,
many companies and individual developers use an external Git repository pro-
vider. Several Git repository hosting companies, such as Github and Gitlab,
host thousands of repositories on the cloud. In the examples here, I use Github
as the shared repository.

Figure 10.6 shows four project repositories on Github, RP1–RP4. RP1 is
the repository for project 1, RP2 is the repository for project 2, and so on. Each
of the developers on each project is identified by a letter (a, b, c, etc.) and has
an individual copy of the project repository. Developers may work on more
than one project at a time, so they may have copies of several Git repositories
on their computer. For example, developer a works on Project 1, Project 2,
and Project 3, so has clones of RP1, RP2, and RP3.

Figure 10.6 Git repositories

Github

RP1 RP2

RP3 RP4

Project 1 Project 2

Project 3 Project 4

RP1a

RP1b RP1d

RP1c RP2p

RP2r

RP2a

RP3a

RP3b RP3f

RP3c
RP4j RP4k

M10_SOME6349_01_GE_C10.indd 315 27/09/2020 14:07

316 Chapter 10 ■ DevOps and Code Management

10.1.2 Using Git

When you join a project, you set up a project directory on your computer that
acts as your workspace for that project. If necessary, you install the same ver-
sions of tools (including Git) that your team uses. As you work in the project
directory, the following sequence of commands sets up a local Git repository,
often called a repo, in that directory. The local project directory is then cloned
from a remote repo.

cd myproject
git init #Sets up the local repo in the project directory called myproject
git clone <URL of external repository>

The clone command copies the master files from the remote repository to
the working directory. These are usually the most recent versions of the proj-
ect files. It also copies the repository information from the external reposi-
tory so that you can see what other developers have done. You can query
this information and download other branches from the project repo if you
need them.

You can then start to work on the files in your project directory, adding new
files and making changes as required. To update your local repo, you use the
add and commit commands. The list of files in the add command are those
files that you want to manage. The commit command adds these files to the
local repo after you have made changes to them.

git add <list of files to be controlled>
git commit

To work with Git, you need to understand the concepts of branching and
merging, which are the features that allow developers to work on the same
files without interference.

Branching and merging are fundamental ideas that are supported by all
code management systems. A branch is an independent, stand-alone version
that is created when a developer wishes to change a file. The changes made
by developers in their own branches may be merged to create a new shared
branch. The repository ensures that branch files that have been changed can-
not overwrite repository files without a merge operation.

Let’s assume that Alice and Bob are working on the same file in the Git
repo. To make their changes, each creates a branch for working on a copy of

M10_SOME6349_01_GE_C10.indd 316 27/09/2020 14:07

 10.1 ■ Code management 317

that file (Figure 10.7). Alice is working on a new experimental feature, and
Bob is working on a bug fix.

If Alice or Bob make mistakes on the branch they are working on, they can
easily revert to the master file. If they commit changes while working, they
can revert to earlier versions of the work they have done. When they have
finished and tested their code, they can replace the master file by merging the
work they have done with the master branch. Figure 10.7 shows that Bob has
merged his bug fix with the master branch.

Bob and Alice work with their local repos and there are no conflicts
between them. At some stage, however, both of them may try to update the
external repository with their changed files. Let’s assume Bob is first to update
the external repo. He merges the changed files and pushes the changes to the
shared repo. His update is accepted. Alice then tries to push her changes to the
repo, but they are rejected because of the possible conflict with Bob’s changes.

Git compares versions of files on a line-by-line basis. There is no conflict if
developers have changed different lines in the file. If they have made changes
to the same lines, however, then a merge conflict is signaled. Git highlights
the lines where the conflict occurs, and it is up to the developers to resolve
these conflicts. In this example, Alice should talk with Bob about his changes
and then make changes to the files to resolve the conflict.

Git is very efficient in managing branches, so it makes sense to use this
mechanism even when you are making small changes to your code. To create a
new branch based on the files in your working directory, you use the checkout
command with a -b flag. The command below creates a new branch called
fix-header-format

git checkout -b fix-header-format

Figure 10.7 Branching and merging

Merge

Alice

Bob

Feature experiment branch

Bug fix branch

Master branch

M10_SOME6349_01_GE_C10.indd 317 27/09/2020 14:07

318 Chapter 10 ■ DevOps and Code Management

Let’s assume this involves editing two files: report_printer.py and generate_
header.py. You make the edits to these files, add them, and commit.

git add report_printer.py generate_header.py
git commit

The commit command defaults to committing the changes to the current
branch, which is fix-header-format. You then decide that you are happy with
the changes that you have made and want to merge them with the master
branch in your directory. You check out the master branch from the project
repo to make sure that you have the most recent version of all master files and
then issue a merge command:

git checkout master
git merge fix-header-format

At this stage, you have updated the master branch in your local repository
but not the external repository. To incorporate the changes that you have made
in the master branch of the external repository, you use a push command:

git push

Git then examines your repo and the external repo, works out what files
have changed, and pushes the changes to the external repo. Although I do
not shown this here, you can push to specific branches on the external repo.

In the Alice and Bob scenario, Bob issues a push command to push his
changed files to the external repo. Alice tries to push her changes, but Git
rejects them because it knows that Bob has already issued a push command
with possible conflicts. Alice must then update her repository with Bob’s
changes using a pull command:

git pull

The pull command fetches a copy of the files that includes Bob’s changes
from the master in the external repo. It updates Alice’s local repo with these
files. Alice then works on fixing the potential conflict and then pushes the
updated branch to the external repo.

Git was originally developed to support open-source software develop-
ment. In the open-source model, many different people can work indepen-
dently on the code without any knowledge of what others are doing. The
master version of the open-source software is managed by an individual or

M10_SOME6349_01_GE_C10.indd 318 27/09/2020 14:07

 10.1 ■ Code management 319

small group that decides what changes should be incorporated. Figure 10.8
shows how Git and GitHub can support this way of working.

Alice and Bob are both making their own changes to the open-source soft-
ware. Each has a repository on Github as well as a private repository on their
own computer. The master repository for the open-source project is held on
Github and is managed by Charlie. Charlie is responsible for deciding whether
changes made by developers should be incorporated into the master.

This is the sequence of actions involved in updating the master version of
an open-source project:

1. Alice and Bob copy the master branch from the project repository on
Github into their personal Github repositories.

2. They pull their shared public repo to their private repos and complete
their changes to the code.

3. They push these changes to their public repos and tell Charlie about the
changes they have made.

4. Charlie pulls the changes from Alice’s and Bob’s repos into his private
repo. He examines and checks the work, runs tests if necessary, and
decides whether it should be included in the open-source system.

5. If the software changes are acceptable, Charlie pushes these changes from
his private repo to the definitive project repo.

Github uses a very general mechanism called Webhooks to trigger actions
in response to an update to the project repository. Webhooks sends data, using

Figure 10.8 Using Github for open-source development

Alice Bob

Github project
repository

Charlie

Alice’s Github
repository

Bob’s Github
repository

Bob’s private
repository

Charlie’s private
repository

Alice’s private
repository

1 1

22

3 3

44

5

M10_SOME6349_01_GE_C10.indd 319 27/09/2020 14:07

320 Chapter 10 ■ DevOps and Code Management

an HTTP POST request, to a URL when some action occurs. Therefore, you
can configure Github to send messages to developers about changes and to
trigger a system build and test when new code is added. This feature is used
to communicate with external tools such as the DevOps automation tools that
I cover in the next section.

10.2 DevOps automation

Historically, the processes of integrating a system from independently devel-
oped parts, deploying that system in a realistic testing environment, and
releasing it were time-consuming and expensive. By using DevOps with
automated support, however, you can dramatically reduce the time and costs
for integration, deployment, and delivery.

“Everything that can be should be automated” is a fundamental principle
of DevOps. In addition to reducing the costs and time required for integration,
deployment, and delivery, automation makes these processes more reliable
and reproducible. Automation information is encoded in scripts and system
models that can be checked, reviewed, versioned, and stored in the project
repository. Deployment does not depend on a system manager who knows
the server configurations. A specific server configuration can be quickly and
reliably reproduced using the system model.

Figure 10.3 showed the four aspects of DevOps automation. I explain these
in Table 10.5.

Another area of automation that I think is important is the automation of
issue tracking. Issue and bug tracking involves recording observed problems
and the development team’s responses to these problems. If you use Scrum
or a Scrum-like process, these issues should be automatically added to the
product backlog.

Several open-source and proprietary issue-tracking tools are widely used,
such as Bugzilla, FogBugz, and JIRA. These systems include the following
features:

1. Issue reporting Users and testers can report an issue or a bug and provide
further information about the context where the problem was discov-
ered. These reports can be sent automatically to developers. Developers
can comment on the report and indicate if and when the issue has been
resolved. Reports are stored in an issue database.

M10_SOME6349_01_GE_C10.indd 320 27/09/2020 14:07

 10.2 ■ DevOps automation 321

2. Searching and querying The issue database may be searched and queried.
This is important to discover whether issues have already been raised,
to discover unresolved issues, and to find out if related issues have been
reported.

3. Data analysis The issue database can be analyzed and information
extracted, such as the number of unresolved issues, the rate of issue
resolution, and so on. This is often presented graphically in a system
dashboard.

4. Integration with source code management Issue reports can be linked to
versions of software components stored in the code management system.

I do not go into any more details about issue-tracking tools, but it is essen-
tial for DevOps to use automated issue tracking. The issue-tracking system
captures data about the use of a software product that can be analyzed in
conjunction with other data in a DevOps measurement system.

10.2.1 Continuous integration

System integration (system building) is the process of gathering all of the ele-
ments required in a working system, moving them into the right directories,
and putting them together to create an operational system. This involves more

Aspect Description

Continuous integration Each time a developer commits a change to the project’s
master branch, an executable version of the system is built
and tested.

Continuous delivery A simulation of the product’s operating environment is
created and the executable software version is tested.

Continuous deployment A new release of the system is made available to users
every time a change is made to the master branch of the
software.

Infrastructure as code Machine-readable models of the infrastructure (network,
servers, routers, etc.) on which the product executes
are used by configuration management tools to build the
software’s execution platform. The software to be installed,
such as compilers and libraries and a DBMS, are included in
the infastructure model.

Table 10.5 Aspects of DevOps automation

M10_SOME6349_01_GE_C10.indd 321 27/09/2020 14:07

322 Chapter 10 ■ DevOps and Code Management

than compiling the system. You usually have to complete several other steps
to create a working system. Although every product is different, the following
typical activities are part of the system integration process:

■■ installing database software and setting up the database with the appropri-
ate schema;

■■ loading test data into the database;

■■ compiling the files that make up the product;

■■ linking the compiled code with the libraries and other components used;

■■ checking that the external services used are operational;

■■ deleting old configuration files and moving configuration files to the cor-
rect locations;

■■ running a set of system tests to check that the integration has been
successful.

If a system is infrequently integrated, many of the system’s components are
changed, sometimes significantly, between integrations. When problems are
discovered, they are often difficult to isolate, and fixing them slows down the
system development. To avoid this problem, the developers of the Extreme
Programming method suggested that continuous integration should be used.

Continuous integration simply means that an integrated version of the system
is created and tested every time a change is pushed to the system’s shared code
repository. On completion of the push operation, the repository sends a mes-
sage to an integration server to build a new version of the product (Figure 10.9).

Figure 10.9 Continuous integration

GET
COMPILE

AND BUILD TEST

Executable
system

Source code files
from code management

Libraries Configuration
files

Database
files

Executable
tests

Deployable
system

Trigger
from repo

M10_SOME6349_01_GE_C10.indd 322 27/09/2020 14:07

 10.2 ■ DevOps automation 323

The squares in Figure 10.9 are the elements of a continuous integration
pipeline that is triggered by a repository notification that a change has been
made to the master branch of the system.

In a continuous integration environment, developers have to make sure that
they don’t “break the build.” Breaking the build means pushing code to the
project repository, which when integrated, causes some of the system tests
to fail. This holds up other developers. If this happens to you, your priority
is to discover and fix the problem so that normal development can continue.
To avoid breaking the build, you should always adopt an “integrate twice”
approach to system integration. You should integrate and test on your own
computer before pushing code to the project repository to trigger the integra-
tion server (Figure 10.10).

The advantage of continuous integration compared to less frequent integra-
tion is that it is faster to find and fix bugs in the system. If you make a small
change and some system tests then fail, the problem almost certainly lies in
the new code that you have pushed to the project repo. You can focus on this
code to find the bug that’s causing the problem.

If you continuously integrate, then a working system is always available
to the whole team. This can be used to test ideas and to demonstrate the fea-
tures of the system to management and customers. Furthermore, continuous
integration creates a “quality culture” in a development team. Team members
want to avoid the stigma and disruption of breaking the build. They are likely
to check their work carefully before pushing it to the project repo.

Figure 10.10 Local integration

Make changes
to code

Commit changes
to local repo

Pull changes
to master branch

Merge master
with local repo

Compile and
build system

Test
system

Executable
system

Test failure

Push code
to project repo

Test
success

Executable
tests

From project repo

M10_SOME6349_01_GE_C10.indd 323 27/09/2020 14:07

324 Chapter 10 ■ DevOps and Code Management

Continuous integration is effective only if the integration process is fast and
developers do not have to wait for the results of their tests of the integrated
system. However, some activities in the build process, such as populating
a database or compiling hundreds of system files, are inherently slow. It is
therefore essential to have an automated build process that minimizes the time
spent on these activities.

Fast automated building is possible because, in a continuous integration
system, the changes made to the system between one integration and another
are usually relatively small. Usually this means that only a few source code
files have been changed. Code integration tools use an incremental build
process so that they only have to repeat actions, such as compilation, if the
dependent files have been changed.

To understand incremental system building, you need to understand the
concept of dependencies. Figure 10.11 is a dependency model that shows the
dependencies for test execution. An upward-pointing arrow means “depends
on” and shows the information required to complete the task shown in the
rectangle at the base of the model. Figure 10.11 therefore shows that running
a set of system tests depends on the existence of executable object code for
both the program being tested and the system tests. In turn, these depend on
the source code for the system and the tests that are compiled to create the
object code.

The first time you integrate a system, the incremental build system com-
piles all the source code files and executable test files. It creates their object
code equivalents, and the executable tests are run. Subsequently, however,
object code files are created only for new and modified tests and for source
code files that have been modified.

Figure 10.11 A dependency model

Test execution

Program object
 code files

Test source
code files

Program source
code files

Test object
code files

depends on

depends on

M10_SOME6349_01_GE_C10.indd 324 27/09/2020 14:07

 10.2 ■ DevOps automation 325

Figure 10.12 is a lower-level dependency model that shows the dependen-
cies involved in creating the object code for a source code file called Mycode.
Source code files are rarely independent but rely on other information such as
libraries. Mycode depends on two libraries (Lib 1 and Lib 2) and an externally
defined class definition.

An automated build system uses the specification of dependencies to work
out what needs to be done. It uses the file modification timestamp to decide
whether a source code file has been changed after the associated object code
file was created. If so, the source code must be recompiled. To illustrate this,
consider three scenarios based on Figure 10.12:

1. The modification date of the compiled code is later than the modification
date of the source code. The build system infers that no changes have been
made to the source code and does nothing.

2. The modification date of the compiled code is earlier than the modifica-
tion date of the compiled code. The build system recompiles the source
and replaces the existing file of compiled code with an updated version.

3. The modification date of the compiled code is later than the modification
date of the source code. However, the modification date of Classdef is
later than the modification date of the source code of Mycode. Therefore,
Mycode has to be recompiled to incorporate these changes.

Manually recording file dependencies is a tedious and time-consuming
task. For most programming languages, however, either the compiler or a
separate tool can automatically create a dependency model that can be used
for system building. The system building software uses the model when it
builds the system to optimize the build process.

Figure 10.12 File dependencies

Mycode (compiled)

Mycode (source)

Lib 2 Classdef (compiled)Lib 1

M10_SOME6349_01_GE_C10.indd 325 27/09/2020 14:07

326 Chapter 10 ■ DevOps and Code Management

The oldest and perhaps best known system building tool is make, which
was originally developed in the 1970s for Unix. System building commands
are written as a shell script. Other tools such as Ant and Maven, which are
Java oriented, and Rake, which is Ruby oriented, use different approaches to
specify dependencies, but all basically do the same thing.

Tools that support the entire continuous integration process allow you to
define an activity pipeline, such as that shown in Figure 10.9, and execute that
pipeline. In addition to building the system, they can populate the database,
run automated tests, and so on. Examples of continuous integration tools
include Jenkins, a widely used open-source system, and proprietary products
such as Travis and Bamboo.

10.2.2 Continuous delivery and deployment

Continuous integration (CI) means creating an executable version of a soft-
ware system whenever a change is made to the repository. The CI tool is
triggered when a file is pushed to the repo. It builds the system and runs
tests on your development computer or project integration server. How-
ever, the real environment in which software runs will inevitably be dif-
ferent from your development system. The production server may have a
different filesystem organization, different access permissions, and different
installed applications. Consequently, when your software runs in its real
operational environment, bugs may be revealed that did not show up in the
test environment.

Continuous delivery means that, after making changes to a system, you
ensure that the changed system is ready for delivery to customers. This means
that you have to test it in a production environment to make sure that envi-
ronmental factors do not cause system failures or slow down its performance.
As well as feature tests, you should run load tests that show how the software
behaves as the number of users increases. You may also run tests to check the
throughput of transactions and your system’s response time.

The simplest way to create a replica of a production environment is to run
your software in a container, as I explained in Chapter 5. Your production envi-
ronment is defined as a container, so to create a test environment, you simply
create another container using the same image. This ensures that changes made
to the production environment are always reflected in the test environment.

Continuous delivery does not mean that the software will necessarily be
released immediately to users for deployment. When to do this is a business deci-
sion, and there may be good reasons to delay, as I explain later in this section.

M10_SOME6349_01_GE_C10.indd 326 27/09/2020 14:07

 10.2 ■ DevOps automation 327

In the last few years, however, more and more companies have adopted
continuous deployment, where a system is deployed as a cloud service after
every change is made. I explained the continuous deployment process for
microservices in Chapter 6 and showed the continuous deployment pipeline
in Figure 6.16.

Figure 10.13 illustrates a summarized version of this deployment pipeline,
showing the stages involved in continuous delivery and deployment.

After initial integration testing, a staged test environment is created. This
is a replica of the actual production environment in which the system will
run. The system acceptance tests, which include functionality, load, and
performance tests, are then run to check that the software works as expected.
If all of these tests pass, the changed software is installed on the production
servers.

To deploy the system, you transfer the software and required data to the
production servers. You then momentarily stop all new requests for service
and leave the older version to process the outstanding transactions. Once
these have been completed, you switch to the new version of the system and
restart processing.

Table 10.6 shows the benefits of using continuous deployment for product
companies.

Continuous deployment is obviously only practical for cloud-based sys-
tems. If your product is sold through an app store or downloaded from your
website, continuous integration and delivery make sense. A working ver-
sion is always available for release. If you update the downloadable version

Figure 10.13 Continuous delivery and deployment

Continuous delivery

Tested
system

Configure
 test server

Install system
on test server

Run acceptance
tests

Install software on
production servers

Switch operation to
new software

Continuous deployment

All tests pass

Required
software

Test
set

M10_SOME6349_01_GE_C10.indd 327 27/09/2020 14:07

328 Chapter 10 ■ DevOps and Code Management

regularly, your customers can decide when to update the software on their
computers or mobile devices. It is sometimes helpful to provide an auto-
update feature, so that users don’t have to do anything. Many users dislike
this, however, and you should always allow this feature to be disabled.

There are three business reasons you may not want to deploy every soft-
ware change to customers:

1. You may have incomplete features available that could be deployed, but
you want to avoid giving competitors information about these features
until their implementation is complete.

2. Customers may be irritated by software that is continually changing, espe-
cially if this affects the user interface. They don’t want to spend time
continually learning about new features. Rather, they prefer to have a
number of new features available before learning about them.

3. You may wish to synchronize releases of your software with known
business cycles. For example, if your product is aimed at the education

Benefit Explanation

Reduced costs If you use continuous deployment, you have no option but
to invest in a completely automated deployment pipeline.
Manual deployment is a time-consuming and error-prone
process. Setting up an automated system is expensive
and takes time, but you can recover these costs quickly if
you make regular updates to your product.

Faster problem solving If a problem occurs, it will probably affect only a small
part of the system and the source of that problem will
be obvious. If you bundle many changes into a single
release, finding and fixing problems are more difficult.

Faster customer feedback You can deploy new features when they are ready for
customer use. You can ask them for feedback on these
features and use this feedback to identify improvements
that you need to make.

A/B testing This is an option if you have a large customer base and
use several servers for deployment. You can deploy a new
version of the software on some servers and leave the
older version running on others. You then use the load
balancer to divert some customers to the new version
while others use the older version. You can measure and
assess how new features are used to see if they do what
you expect.

Table 10.6 Benefits of continuous deployment

M10_SOME6349_01_GE_C10.indd 328 27/09/2020 14:07

 10.2 ■ DevOps automation 329

market, your customers want stability at the start of their academic year
when they are registering new students, setting up courses, and other
start-of-year tasks. They are unlikely to try new features at that time. It
makes more sense to release features to these customers when they have
time to experiment with the new system.

CI tools such as Jenkins and Travis may also be used to support continuous
delivery and deployment. These tools can integrate with infrastructure con-
figuration management tools such as Chef and Puppet to implement software
deployment. However, for cloud-based software, it is often simpler to use
containers in conjunction with CI tools rather than use infrastructure configu-
ration management software.

10.2.3 Infrastructure as code

In an enterprise environment, there are usually many different physical or vir-
tual servers (web servers, database servers, file servers, etc.) that do different
things. These have different configurations and run different software pack-
ages. Some may have to be updated when new versions of software become
available; others may have to be kept stable because legacy software depends
on older versions of installed software.

It is difficult to keep track of the software installed on each machine. Emer-
gency changes, such as security updates, may have to be made, and the system
administrators don’t always have time to document these changes. Server docu-
mentation is often out of date. Consequently, manually maintaining a computing
infrastructure with tens or hundreds of servers is expensive and error-prone.

The idea of infrastructure as code was proposed as a way to address this
problem. Rather than manually updating the software on a company’s servers,
the process can be automated using a model of the infrastructure written in a
machine-processable language. Configuration management (CM) tools, such
as Puppet and Chef, can automatically install software and services on servers
according to the infrastructure definition. The CM tool accesses a master copy
of the software to be installed and pushes this to the servers being provisioned
(Figure 10.14). When changes have to be made, the infrastructure model is
updated and the CM tool makes the change to all servers.

Defining your software infrastructure as code is obviously relevant to prod-
ucts that are delivered as services. The product provider has to manage the
infrastructure of their services on the cloud. However, it is also relevant if
software is delivered through downloads. In this case, you have to test the

M10_SOME6349_01_GE_C10.indd 329 27/09/2020 14:07

330 Chapter 10 ■ DevOps and Code Management

software in several contexts to ensure that it does not react adversely with the
buyer’s infrastructure. You can do this by defining several test infrastructures
and defining each of them.

Defining your infrastructure as code and using a configuration management
system solve two key problems of continuous deployment:

1. Your testing environment must be exactly the same as your deployment
environment. If you change the deployment environment, you have to
mirror those changes in your testing environment.

2. When you change a service, you have to be able to roll that change out to
all of your servers quickly and reliably. If there is a bug in your changed
code that affects the system’s reliability, you have to be able to seamlessly
roll back to the older system.

The business benefits of defining your infrastructure as code are lower
costs of system management and lower risks of unexpected problems arising
when infrastructure changes are implemented. These benefits stem from four
fundamental characteristics of infrastructure as code, shown in Table 10.7.

As I explained in Chapter 5, the best way to deploy many cloud-based
services is to use containers. A container provides a stand-alone execution
environment that runs on top of an operating system such as Linux. The soft-
ware installed in a Docker container is specified using a Dockerfile, which is
essentially a definition of your software infrastructure as code. You build an
executable container image by processing the Dockerfile.

Figure 10.14 Infrastructure as code

S1:

S2:

S3, S4:

Infrastructure
definition

CM tool

Software to be
installed

Servers

S1

S2

S3

S4

M10_SOME6349_01_GE_C10.indd 330 27/09/2020 14:07

 10.3 ■ DevOps measurement 331

Using containers makes it very simple to provide identical execution
environments. For each type of server you use, you define the environment
that you need and build an image for execution. You can run an application
container as a test system or as an operational system; there is no distinc-
tion between them. When you update your software, you rerun the image
creation process to create a new image that includes the modified software.
You can then start these images alongside the existing system and divert
service requests to them.

Cloud-based products usually have fewer server types (e.g., web servers,
database servers, application servers) than enterprise systems. However, you
may have to provision new servers in response to increasing demand and then
shut down servers at quieter times. You can define containers for each type of
server and use a container management system, such as Kubernetes, to deploy
and manage these containers.

10.3 DevOps measurement

After you have adopted DevOps, you should try to continuously improve
your DevOps process to achieve faster deployment of better-quality soft-
ware. This means you need to have a measurement program in place in

Characteristic Explanation

Visibility Your infrastructure is defined as a stand-alone model that can be
read, discussed, understood, and reviewed by the whole DevOps
team.

Reproducibility Using a configuration management tool means that the installation
tasks will always be run in the same sequence so that the same
environment is always created. You are not reliant on people
remembering the order that they need to do things.

Reliability In managing a complex infrastructure, system administrators often
make simple mistakes, especially when the same changes have to
be made to several servers. Automating the process avoids these
mistakes.

Recovery Like any other code, your infrastructure model can be versioned
and stored in a code management system. If infrastructure changes
cause problems, you can easily revert to an older version and
reinstall the environment that you know works.

Table 10.7 Characteristics of infrastructure as code

M10_SOME6349_01_GE_C10.indd 331 27/09/2020 14:07

332 Chapter 10 ■ DevOps and Code Management

which you collect and analyze product and process data. By making mea-
surements over time, you can judge whether or not you have an effective
and improving process.

Measurements about software development and use fall into four categories:

1. Process measurements You collect and analyze data about your develop-
ment, testing, and deployment processes.

2. Service measurements You collect and analyze data about the software’s
performance, reliability, and acceptability to customers.

3. Usage measurements You collect and analyze data about how customers
use your product.

4. Business success measurements You collect and analyze data about how
your product contributes to the overall success of the business.

Process measurements and service measurements are the most relevant
types for DevOps. Usage measurements help you identify issues and prob-
lems with the software itself. Some people think that business success
measurements should also be defined and measured. However, as I explain
later, I think these are unreliable and I am not convinced that they are
worthwhile.

Measurement of software and its development is a complex process. You
have to identify the metrics that are likely to give you useful insights and find
reliable ways of collecting and analyzing metrics data. It is sometimes impos-
sible to measure what you really want to measure directly (such as customer
satisfaction). You therefore have to make inferences from other metrics (such
as the number of returning customers) that you can collect.

As far as possible, the DevOps principle of automating everything should
be applied to software measurement. You should instrument your software
to collect data about itself, and you should use a monitoring system, as I
explained in Chapter 6, to collect data about your software’s performance
and availability. Some process measurements can also be automated. There
are problems in process measurement, however, because people are involved.
Different people work in different ways, may record information differently,
and are affected by outside influences on the way they work.

For example, it may seem simple to record the lead time from the
start of development of a change proposal to the deployment of the code
implementing that change. However, what does “lead time” mean? Does
it mean elapsed time or the time spent by the developer working on the

M10_SOME6349_01_GE_C10.indd 332 27/09/2020 14:07

 10.3 ■ DevOps measurement 333

problem? What assumptions are made about normal working hours? Do
some changes have higher priority than others so that work on one change
is stopped to implement another? There are no simple answers to these
questions, which means that process metrics are never simple to collect
and analyze.

Many articles on DevOps measurement make the point that you should
link process and product measurements to business success measurements.
They suggest that improvement to your DevOps process leads to a more
successful business. This sounds fine in principle, but I think that linking
DevOps measurements to business performance indicators is idealistic and
impractical. Many factors contribute to business success, and it is practically
impossible to isolate the contribution of DevOps. For example, a business
may be more successful because it has introduced DevOps. Alternatively,
the success may be due to better managers who have introduced changes,
including the use of DevOps.

I believe you should accept that DevOps is worth doing and then focus on
collecting process and performance metrics that you can use to improve your
software delivery and deployment process. Payal Chakravarty from IBM sug-
gests a very practical approach to DevOps measurement.2

Based on a goal of shipping code frequently without causing customer out-
ages, she suggests the use of a metrics scorecard based on nine metrics that
are fairly easy to collect. These are relevant to software that is delivered as
a cloud service. They include process metrics and service metrics, as shown
in Figure 10.15.

For the process metrics, you would like to see decreases in the number of
failed deployments, the mean time to recovery after a service failure, and the
lead time from development to deployment. You would hope to see increases
in the deployment frequency and the number of lines of changed code that are
shipped. For the service metrics, availability and performance should be stable
or improving, the number of customer complaints should be decreasing, and
the number of new customers should be increasing.

Chakravarty suggests that the collected data should be analyzed weekly
and presented in a single screen that shows performance in the current and
previous weeks. You can also use a graphical presentation that is better
for seeing long-term trends. Figure 10.16 shows examples of this trend
analysis.

2Payal Chakravarty, “The DevOps Scorecard,” 2014, https://devops.com/devops-scorecard/

M10_SOME6349_01_GE_C10.indd 333 27/09/2020 14:07

https://devops.com/devops-scorecard/

334 Chapter 10 ■ DevOps and Code Management

Figure 10.16 Metrics trends

Weeks

Availability

Deployment
frequency

Number of
customer
complaints

1 2 3 4 5

Figure 10.15 Metrics used in the DevOps scorecard

Deployment
frequency

Change
volume

DevOps
metrics

Lead time from
development to deployment

Percentage of
failed deployments

Mean time to
recovery

Number of
customer complaints

Availability

Performance

Percentage increase
in customer numbers

Process metrics

Service metrics

M10_SOME6349_01_GE_C10.indd 334 27/09/2020 14:07

 10.3 ■ DevOps measurement 335

You can see from Figure 10.16 that the availability is roughly stable over
time and the deployment frequency is increasing. The number of customer
complaints is more variable. The jump in week 2 suggests that there were
problems with one of the system releases that week. However, the overall
trend indicates a small improvement over time.

To collect these data, you may use several different tools. Continuous inte-
gration tools such as Jenkins can collect data about deployments, successful
tests, and so on. Cloud providers often have monitoring software, such as
Cloudwatch from Amazon, that can provide data on availability and perfor-
mance. You can collect customer-supplied data from an issue management
system.

As well as using these tools, you may add instrumentation to your product
to gather data on its performance and how it is used by customers. By analyz-
ing these data, you gain insights into what customers really do, rather than
what you expect them to do, and you identify parts of your software that need
improvement. The most practical way of doing this is to use log files, where
the entries in the log are timestamped events reflecting customer actions
and/or software responses (Figure 10.17).

To be useful, you have to log as many events as possible, which means
that the logging software may be recording hundreds of events per sec-
ond. Various log analysis tools are available to manage these data in the
cloud and analyze them to create useful information about how your soft-
ware is used. These may present information using a metrics dashboard
that shows the data that have been analyzed and how they are changing
over time.

Figure 10.17 Logging and analysis

Executing
software

Log 2

Log 1

Log 3

Log
analyzer

Metrics
dashboard

M10_SOME6349_01_GE_C10.indd 335 27/09/2020 14:07

336 Chapter 10 ■ DevOps and Code Management

K E Y P O I N T S

■■ DevOps is the integration of software development and the management of that software
once it has been deployed for use. The same team is responsible for development,
deployment, and software support.

■■ The benefits of DevOps are faster deployment, reduced risk, faster repair of buggy code, and
more productive teams.

■■ Source code management is essential to avoid changes made by different developers
interfering with each other.

■■ All code management systems are based around a shared code repository with a set of
features that support code transfer, version storage and retrieval, branching and merging,
and maintaining version information.

■■ Git is a distributed code management system that is the most widely used system for
software product development. Each developer works with their own copy of the repository,
which may be merged with the shared project repository.

■■ Continuous integration means that as soon as a change is committed to a project repository,
it is integrated with existing code and a new version of the system is created for testing.

■■ Automated system building tools reduce the time needed to compile and integrate the
system by recompiling only those components and their dependents that have changed.

■■ Continuous deployment means that as soon as a change is made, the deployed version of the
system is automatically updated. This is only possible when the software product is delivered
as a cloud-based service.

■■ Infrastructure as code means that the infrastructure (network, installed software, etc.) on
which software executes is defined as a machine-readable model. Automated tools, such as
Chef and Puppet, can provision servers based on the infrastructure model.

■■ Measurement is a fundamental principle of DevOps. You may make both process and product
measurements. Important process metrics are deployment frequency, percentage of failed
deployments, and mean time to recovery from failure.

R E C O M M E N D E D R E A D I N G

“What Is DevOps?” This blog post, written as DevOps was just starting to be used, is a thoughtful
explanation of what DevOps means. It does not go into detail but encapsulates the essence of
DevOps. (E. Mueller, 2010)

https://theagileadmin.com/what-is-dev/

M10_SOME6349_01_GE_C10.indd 336 27/09/2020 14:07

https://theagileadmin.com/what-is-dev/

 Exercises 337

“Why Git for Your Organization” This blog post discusses how Git is not just a system that benefits
developers but also has wider organizational applicability with benefits for marketing, product
management, customer support, and so on. (Atlassian, undated)

https://www.atlassian.com/git/tutorials/why-git

“Continuous Integration” This is quite an old post by one of the pioneers of continuous integration,
but I think it is one of the best overviews of the topic. It’s clear and easy to read. (M. Fowler, 2006)

https://www.martinfowler.com/articles/continuousIntegration.html

“Continuous Integration: The answer to life, the universe, and everything?” It is always useful to
read a viewpoint contrary to the conventional wisdom that continuous integration is a good thing.
This article points out some of the problems of introducing CI and suggests that the benefits may
not always be as great as expected. (M. Heller, undated)

https://techbeacon.com/continuous-integration-answer-life-universe-everything

“Building and Deploying Software through Continuous Delivery” This is a good summary of the
principles of continuous delivery, with useful links to other resources on the topic. (K. Brown, undated)

https://www.ibm.com/cloud/garage/content/deliver/practice_continuous_delivery/

“Infrastructure as Code: A Reason to Smile” This is a clear explanation of the benefits of defining
your computing infrastructure as code. (J. Sitakange, 2016)

https://www.thoughtworks.com/insights/blog/infrastructure-code-reason-smile

P R E S E N T A T I O N S , V I D E O S , A N D L I N K S

https://iansommerville.com/engineering-software-products/dev-and-code-management

E X E R C I S E S

 10.1. Explain why adopting DevOps provides a basis for more efficient and effective software
deployment and operation.

 10.2. Briefly explain why it is essential to use a code management system when several
developers are involved in creating a software system. What are the benefits of using a
code management system if only a single developer is involved?

 10.3. What is the fundamental difference between distributed and centralized code
management systems? How does this difference lead to the most significant benefits of
distributed code management systems?

M10_SOME6349_01_GE_C10.indd 337 27/09/2020 14:07

https://www.atlassian.com/git/tutorials/why-git
https://www.martinfowler.com/articles/continuousIntegration.html
https://techbeacon.com/continuous-integration-answer-life-universe-everything
https://www.ibm.com/cloud/garage/content/deliver/practice_continuous_delivery/
https://www.thoughtworks.com/insights/blog/infrastructure-code-reason-smile
https://iansommerville.com/engineering-software-products/dev-and-code-management

338 Chapter 10 ■ DevOps and Code Management

 10.4. What does creating a new branch in a code management system mean? What problems
can arise when more than one developer is working on the same code and they try to
merge their changes with the project master branch?

 10.5. Explain how the use of Git and a shared public Git repository simplifies the process of
managing open-source development when many developers may be working on the same
code.

 10.6. What is issue management, and why is it important for software product development?

 10.7. Explain why there is more to system integration than simply recompiling the code of the
software.

 10.8. Why does the use of continuous integration make it easier to find bugs in the software that
you are developing?

 10.9. What are the differences between continuous integration, continuous delivery, and
continuous deployment?

 10.10. What are process metrics and service metrics? Explain why service metrics are easier to
collect and potentially more accurate than process metrics.

M10_SOME6349_01_GE_C10.indd 338 27/09/2020 14:07

Product and System
Engineering Processes

I explained in Chapter 1 that this book concentrates on the development of
software products. Software products are developed by a company (the ven-
dor) for sale to other individuals, companies, or organisations (the customers).

Software product engineering is a distinct activity but it is closely related
to software system engineering. Software system engineering, which emerged
as an engineering discipline in the 1960s, focuses on the development of
software systems that are designed to support the business activities of the
purchaser of the software system. It is sometimes called project-based
software engineering to reflect the fact that a software project is established
to manage and support the software development.

Many of the software engineering techniques that we use are applicable to
both of these types of software engineering, but there is a critical difference
between these activities: an external customer is almost always involved in
software systems engineering. I summarized these differences in Figures 1.1
and 1.2, which I have included here (Figures A1.1, A1.2).

In software systems engineering, the customer has a problem and, based
on their understanding of the problem, must specify the characteristics of the
software to be developed. In essence, they identify the requirements for the
software. Changes to the requirements are usually suggested by the customer
and must be agreed with the company developing the software.

In software product engineering, the same company specifies and develops
the system. Their software specification is based on an identified opportunity
for software that customers might buy and the specification can be easily
changed by the company developing the system.

Appendix 1

Z01_SOME6349_01_GE_APP.indd 339 12/10/2020 16:01

340 Appendix 1 ■ Product and System Engineering Processes

Problem

Requirements Software

CUSTOMER

CUSTOMER and
DEVELOPER

DEVELOPER

implemented-by

helps-withgenerates

Figure A1.1 Project-based software engineering

Figure A1.2 Product software engineering

Opportunity

Product
features Software

DEVELOPER

DEVELOPER DEVELOPER

implemented-by

realizesinspires

This book focuses on software product engineering because this is by far
the biggest sector of the software market today. This contrasts with the situa-
tion around 30 years ago, when the software market was dominated by com-
panies developing custom systems for large companies, the government, and
the military. However, there is still a significant market for custom software
systems, developed by software project teams. Readers of this book may
move between companies developing software products and software systems.
My aim in this Appendix is to make this easier by explaining, in more detail,
the similarities and the differences between these different types of software
engineering. To do this, it makes sense to explain how software engineering
started and evolved and then compare the processes of system and product
engineering.

Z01_SOME6349_01_GE_APP.indd 340 12/10/2020 16:01

A.1 The evolution of software engineering

In the early 1960s, a new approach to computer hardware construction was
developed based on electronic integrated circuits. In an integrated circuit,
electronic components are created within a single piece of semiconducting
material (usually silicon) and they are the basis of all modern electronics. It
is now possible to include millions of discrete components on a single chip
of silicon about the size of a fingernail.

The previous generation of computers were expensive systems, built using
individual transistors that were wired together. This meant they were bulky,
expensive, and unreliable. Their customers were limited to the military,
government, research labs, and very large corporations.

Integrated circuits revolutionized the computer market. Computers became
faster, smaller, and cheaper. The market expanded rapidly and needed soft-
ware. This included systems software to manage these new, more powerful,
computers as well as application software to meet the business needs of
customers. Instead of relatively small, focused software systems, there was
now a need for large, complex systems.

The informal programming techniques that had evolved in universities and
in computer companies in the 1950s, however, didn’t scale up to large-scale
systems engineering. The initial efforts to develop large software systems
were usually late and well over-budget; the developed software was frequently
unreliable and did not live up to the expectations of its users.

The need for a more disciplined approach to software development was
recognized in different places in the mid-1960s. There is some debate about
the first use of the term “software engineering,” but Margaret Hamilton, a lead
engineer on the Apollo program who was responsible for on-board software
development, certainly used the term around 1966. In 1968, the first confer-
ence on software engineering was held, sponsored by NATO. A discipline
was born.

The starting point for a more disciplined approach to software development
was managerial and organizational, rather than technical. Large-scale projects
involving hardware were developed in a sequence of phases and, in 1970, this
phased model was used as a basis for the so-called software life cycle model.
This life cycle model is shown in Figure A1.3.

The managerial idea behind the lifecycle model was progress. It involved
moving from the Requirements phase at the top of the model to the Deploy-
ment phase at the bottom (I’ll ignore the Maintenance phase for now). All
work on a preceding phase should be completed before the next phase was

 A.1 ■ The evolution of software engineering 341

Z01_SOME6349_01_GE_APP.indd 341 12/10/2020 16:01

342 Appendix 1 ■ Product and System Engineering Processes

started. For example, the requirements for the software must be complete
before the software design begins. Work flows from top to bottom and so this
model is sometimes called “the waterfall model.”

This structured approach makes sense for hardware development because,
at that time, it was very expensive to change a hardware unit after it had been
manufactured.1 Therefore, it was important to be very clear about what the
hardware was supposed to do (its requirements) and to extensively analyze
and check the hardware design before it was manufactured.

The same approach doesn’t work well for software. The essence of soft-
ware is that it is malleable—it can be changed during the development
process and after delivery. If new requirements emerge while the software
is being developed, these can (sometimes) be accommodated in the revised
software.

Unfortunately, government, military, and senior company managers did
not understand the limitations of the waterfall model, but saw it as a way to
improve software management. For the next 20 odd years or so, software
engineers developed software by faking their development process so that
it fitted the model. Only a small number of enlightened companies initially
recognized that the waterfall model was simply not fit for this purpose and
they proposed that a development model based on incremental development

1Hardware is still expensive to change but less so as it has become programmable (FPGAs)

Figure A1.3 The software life cycle

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Acknowledgment: Software Engineering, 10th Edition, Ian Sommerville, Pearson Education Limited

Z01_SOME6349_01_GE_APP.indd 342 12/10/2020 16:01

should be adopted. The software is developed in increments and develop-
ment of an increment can begin before other increments are fully specified.
This incremental approach was the basis of agile development and is now the
standard approach for all types of software engineering.

It should be noted that, in spite of its limitations, the development activities
that are identified in the waterfall model are fundamental to all software engi-
neering, and I’ll use these activities as a basis for comparing software product
and software system engineering. Before this, however, I want to explain how
developments in software technology influenced software engineering.

A.1.1 Software technology

The waterfall model is a project management model and it does not prescribe
the specific methods and techniques that should be used in each of the develop-
ment phases. Many engineers recognized that software engineering was not
simply a management problem but that new techniques and methods were
required to aid the production of efficient and reliable software. So, since
the inception of software engineering, there has been a drive to improve soft-
ware tools and technology to reduce the costs of development and improve the
reliability of developed programs.

Some of the most important methods and technologies that were originally
developed to support project-oriented software engineering are:

■■ structured programming in high-level languages,

■■ graphical system modelling,

■■ object-oriented development,

■■ programming environments,

■■ parallel programming, and

■■ application program interfaces.

In the 1960s, high-level programming languages such as FORTRAN and
COBOL had been developed and were increasingly used. However, the code
produced by the compilers for these languages was bulky and slow. Machine
assembly language was still commonly used for applications that had to
be responsive or had to fit into a relatively small memory space. Program-
ming itself was an informal activity, dependent on individual skills. All new

 A.1 ■ The evolution of software engineering 343

Z01_SOME6349_01_GE_APP.indd 343 12/10/2020 16:01

344 Appendix 1 ■ Product and System Engineering Processes

programming and development technologies are, essentially, aimed at pro-
viding a structured framework for programming so that the work of different
engineers can be easily integrated and so that a software engineer can, rela-
tively easily, take over the work of another engineer when this is necessary.

Structured programming Structured programming, proposed in the late
1960s, is based around two fundamental ideas:

1. Programs should be written so that they can be read sequentially. The only
conditional statements that should be used are conditionals and simple
loops. In the 1960s, it was common to use the so-called goto statements
where the programmer could switch control to a completely different code
section. Proponents of structured programming argued that this was an
error-prone approach that made programs harder to read and understand.
The idea of sequential execution was quickly adopted. Nowadays, modern
programming languages do not include goto statements.

2. Programs should be hierarchically structured using functions and proce-
dures, with components at level N in a hierarchy only using components
defined at level N-1. This seemed a good idea in principle but difficult
to execute in practice because many functions are reused from different
places in a program. However it is an important idea that emphasized the
need for locality and understandability in programs.

Graphical system modeling Graphical system modelling involves creat-
ing different views of a software system and documenting these using a
graphical notation. These different views may show how data flows through
a system, how a system is structured, how a system processes events, and so
on. Early design methods were based around the idea that a system should
be designed and documented using these models and a systematic process
used to derive programs from these models.

Many different modeling notations were proposed but, in the 1990s, a
standard approach called the UML (Unified Modeling Language) was devel-
oped. This encompassed a range of different models and was focused on
supporting object-oriented development. The UML is widely used in docu-
menting custom system designs but is usually used informally, if at all, in
product design.

Z01_SOME6349_01_GE_APP.indd 344 12/10/2020 16:01

Object-oriented development Early programming languages depended on
procedures and functions to structure programs with shared data either passed
as parameters or held as global variables. An alternative approach, based on
objects, was first proposed in the late 1960s in the Simula programming lan-
guage. The idea really came to the fore in the Smalltalk language, developed
in the 1970s. Rather than using functions to structure a program, Smalltalk
only used objects.

The fundamental differences between a function-oriented approach and an
object-oriented approach are:

1. Objects incorporate both operation code and data. This makes them less
error-prone as the data in objects is protected, unlike global variables in
function-oriented programs.

2. Objects are members of an object class that defines the object data and the
operations on that data. This is similar to the idea of abstract data types
where a data type definition includes the data structure and the operations
allowed on that structure.

3. Objects are usually organized in a class hierarchy and they can inherit
characteristics and operations from other objects higher up in the hier-
archy. Therefore, an object class called “surgeon” could inherit data and
operations from a more general class “doctor.”

The development of Java in the 1990s led to the widespread adoption of
object-oriented development in large-scale systems construction and this is
now the most widely used approach to software development.

Programming environments The development of Smalltalk and related
work in the 1970s introduced another innovation – an integrated program-
ming environment. A programming environment is a set of tools to support
programming. Programming environments are usually focused on a specific
programming language and the tools have built-in knowledge of the language.
As well as compilers, tools may include a syntax-oriented editor, a debugger,
and a static analyzer. They may be integrated with a code management system
such as Git and provide access to other tools such as UML editing tools or
testing tools.

Although each programming environment was originally developed around
a single language, they obviously have much in common. This led to the
development of broader project-support environments such as Eclipse which
can be adapted for a range of different programming languages.

 A.1 ■ The evolution of software engineering 345

Z01_SOME6349_01_GE_APP.indd 345 12/10/2020 16:01

346 Appendix 1 ■ Product and System Engineering Processes

Concurrent programming The notion of concurrent programming (parallel
programming) was first introduced in the development of timesharing operat-
ing systems such as Multics in the 1960s. These systems relied on explicit
mechanisms such as semaphores to ensure that concurrently executing
 programs could share data safely without interfering with each other.

These explicit concurrency-management mechanisms, however, are inher-
ently error prone and this led to the incorporation of concurrency support
in experimental languages such as Concurrent Pascal, developed in 1975.
However, concurrency support only became mainstream in the 1980s when
it was included in Ada, a programming language that was sponsored by the
U.S. Department of Defense specifically for large software system engineering.

Language support for concurrency allows the programmer to define struc-
tures (often called threads) and to share data between these structures in a
controlled way. Threads execute in parallel and may be stopped and started
automatically, waiting for data to become available. There is no need for pro-
grammers to be concerned with how the data sharing is managed.

Concurrency support is now widespread in popular programming lan-
guages such as Java, C#, and Python.

Application program interfaces Large systems are composed of a number
of separate programs that interact with each other rather than a single mono-
lithic program. In the early years of large system development, these programs
were developed individually and interaction with other programs was man-
aged on an ad hoc basis. When one program changed, others that used that
program also had to be changed.

The idea of application program interfaces was probably developed in the
1980s when it became clear that there was a need for a standardized way for
a program to access the functionality of another program. As well as a user
interface, a programmatic interface for programs was also specified, espe-
cially for shared facilities such as those offered by operating systems.

An application program interface (API) is a set of functions and objects
that are exposed by a program to allow external programs (clients) to
access and use its functionality. This means that so long as the API is
maintained, program changes can be made without affecting client pro-
grams. This was an important development as it made possible the wide-
spread reuse of code.

Z01_SOME6349_01_GE_APP.indd 346 12/10/2020 16:01

A.1.2 Software maintenance and evolution

The final stage of the software life cycle as shown in Figure A1.3 is software
maintenance and evolution. During this stage, new customer requirements
emerge and new hardware and supporting software are introduced. An appli-
cation software system has to be modified and changed to deliver the revised
requirements and to continue to work with new hardware and software.

Experience has shown that custom software has a very long lifetime. Many
large-scale software systems that run our financial infrastructure were devel-
oped more than 20 years ago and software that is part of our critical infrastruc-
ture and military systems has to remain operational for as long as the hardware
is used. Often, being in use for 30 years or more is not exceptional. The cost
of maintaining these systems, therefore, is often higher than the initial costs
of system development. This is one reason why it is important to use develop-
ment tools and techniques, such as object-oriented development, that make it
easier to understand and change the software.

The main problem with software maintenance, however, is that these sys-
tems are custom systems designed initially for a set of business needs. They
embed assumptions about the business that may not be obvious when the
software has to be changed; they are often based around a set of business rules
that are not explicitly articulated in one place so the software is, in fact, the
rules manual. Changing or replacing the software may break these rules and
cause all sorts of unexpected problems. This is the reason why we still have
the 20-year-old COBOL systems running financial infrastructures. The risks
of change are so great that they cannot be simply re-specified and reimple-
mented using modern programming technology.

A.2 A comparison of product and system engineering

In this section, I will compare the development of software products with
the development of custom software systems. Recall the critical distinction -
custom software systems are designed for a specific customer who specifies
what they want; software products are specified by the software developer to
reflect what they see as the needs of a wide range of customers.

I’ll organise this comparison around the general activities of software engi-
neering as specified in the lifecycle model shown in Figure A1.3. But first,
I want to talk about the fundamental differences in the development processes
for these types of software.

 A.2 ■ A comparison of product and system engineering 347

Z01_SOME6349_01_GE_APP.indd 347 12/10/2020 16:01

348 Appendix 1 ■ Product and System Engineering Processes

A.2.1 The software process

Custom software systems are built to the requirements of a specific customer.
Consequently, there are important fundamental differences between the pro-
cesses of software system development and software product development.

1. For software systems, there is always a contract agreement stage where
the parties involved agree on the “requirements” (I’ll come to these later)
of the software, the price, the timescale for development, and the man-
agement reports that will be provided by the developer to the customer.

2. Reflecting this contract agreement stage, there is always a customer
acceptance stage, where the customer accepts the software and agrees to
pay the contractor for the work done. This is not simply dependent on the
software meeting the specification. Many things change over the course
of a software project, which may last several years, and the acceptance
stage is concerned with whether or not the software is “good enough” for
the customer at the time of acceptance.

There may be other differences for specific types of systems. For example,
government systems often have to be procured using a formal procurement
process which is “fair” to contractors and which is intended to ensure that the
government is receiving the best value for money.

Technically, there are no fundamental differences between product and
system engineering. The same languages, tools, and methods may be used and
an agile development approach can be followed for both types of systems. In
practice, however, for some types of systems, such as safety-critical systems,
it is usual to use a more structured process. Techniques such as formal speci-
fication and tools such as model checkers which are rarely used for product
development, may be used for critical systems.

System engineering Both products and custom systems are used in wider
technical and socio-technical systems. The development process for the sys-
tem, as distinct from the software, may include activities such as hardware
procurement and installation, hardware design, integration with existing soft-
ware and hardware systems, user interface design, process design, as well
as software engineering. Generally, several companies are involved in the
development of such a system.

Z01_SOME6349_01_GE_APP.indd 348 12/10/2020 16:01

The challenge in system engineering is to schedule and integrate all of
these activities across companies and development groups. This has three
consequences for software system engineering:

1. Interfaces between the software have to be agreed upon relatively early
in the development process. This requires a detailed software design to
be completed before implementation begins.

2. There is limited scope for changing these interfaces after they have been
agreed upon as other parts of the system depend on them. This often
requires extensive work-arounds in the software as problems with the
interfaces are discovered during development.

3. Because of the malleability of software, problems in hardware engineer-
ing often develop new software requirements because it is expensive to
change the hardware after it has been procured or manufactured.

These issues mean that in large scale system engineering, there is less scope
for agile and iterative software development.

A.2.2 Requirements

The term “requirements” came from traditional systems engineering, where
the “requirements” were what the customer “required” from the system that
was being constructed. They defined these requirements in a separate docu-
ment called the requirements specification and this was the basis for the con-
tract between the customer and the software development company.

There are three fundamental problems with this approach, all of which lead
to requirements change:

1. Customers find it very difficult to know what they want from a system
until there is a prototype available that they can experiment with. They
often change their mind during the development process.

2. There are usually different stakeholders in a large system and the require-
ments depend on the extent to which stakeholders engage in the process.
Sometimes, stakeholders do not engage before the requirements docu-
ment is produced but do so after they learn about the impact that the sys-
tem might have on their work.

 A.2 ■ A comparison of product and system engineering 349

Z01_SOME6349_01_GE_APP.indd 349 12/10/2020 16:01

350 Appendix 1 ■ Product and System Engineering Processes

3. During the development process, the environment of the system inevita-
bly changes and this negates the initial assumptions made when specify-
ing the requirements.

The creation of a formal requirements document is still the norm for large-
scale government and military systems. However, for many commercial sys-
tems, the requirements are specified in a less formal way and are negotiated
during the development process. However, this can lead to major contractual
issues if and when things go wrong.

It is sometimes said that software products don’t have requirements. This is
certainly true if you think of requirements as they might be expressed for large
systems. However, the reality is that there need to be some kind of specifica-
tion for all software before development starts so that the development team
have some idea about what they are trying to achieve.

Product specification is normally much less formal and less detailed than
system specification. As I have explained in Chapter 3, the specification may
simply consist of an outline of the problem that the software is supporting
along with a list of features to be included in the software. The specifica-
tion represents a list of intentions and these will normally change during the
development process. These changes sometimes arise because it is difficult
to implement certain features as specified and sometimes the specification
changes because the developers gain a better understanding of the market and
what customers might want.

A.2.3 Design

In the traditional waterfall process, the software was designed in detail down
to a specification of data structures and the individual functions and proce-
dures in the system. This detailed design caused many problems as it could
not take into account dynamic issues such as the responsiveness of the soft-
ware. Now, it is accepted in system engineering that, as far as it is possible,
the design stage should focus on the overall system architecture with detailed
design left to the system programmers. The exception to this is when the
system has to inter-operate with other systems, such as legacy systems. This
is the norm for most large systems. It’s important to design the interaction
APIs in some detail at an early stage in the process so that teams can work
independently on different parts of the system.

The same is also true for software products. As I explained in Chapter 4, all
design decisions cannot be postponed until development. There needs to be

Z01_SOME6349_01_GE_APP.indd 350 12/10/2020 16:01

a discussion about the overall system architecture, the principal components
and subsystems have to be identified, and the design documented.

One important difference between product engineering and system engi-
neering is that there may be a contractual requirement to document the system
design. For products, design documentation tends to be minimal, with the
code acting as the design specification. However, for systems that may have to
be maintained by different teams long after they have been initially deployed,
design documentation, expressed in a notation such as the UML, may be
helpful. The major issue with such documentation, however, is the challenge
of maintaining it when changes to the system are required.

A.2.4 Development

The main distinction in the development stage between products and systems
is the autonomy of the development team. Product developers are less con-
strained by external factors such as defined APIs and can make changes to
simplify the system and its implementation.

Agile methods based on incremental development may be used for systems
as well as product engineering; however, if high-level requirements have to
be changed, this may slow down the process as the changes may have to be
agreed with external stakeholders.

For certain types of safety and security critical systems, different develop-
ment tools such as model checkers and static analyzers may be used to detect
possible code anomalies.

Some product companies use test-driven development where unit tests are
developed before the code is written. This approach is rarely used in custom
software development.

A.2.5 Testing

Automated testing using executable tests may be used for both product and
software system engineering. Large and mid-size product and systems compa-
nies will also do some external testing where a separate testing group tests the
product before it is released to customers. This external testing with detailed
test records may be a requirement for regulated systems where a regulator
such as the U.S. Federal Aviation Authority (FAA) must approve software
before it is put into operation.

Testing is a major problem for large-scale systems engineering because
parts of the system are created by different companies. These companies may

 A.2 ■ A comparison of product and system engineering 351

Z01_SOME6349_01_GE_APP.indd 351 12/10/2020 16:01

352 Appendix 1 ■ Product and System Engineering Processes

have different testing procedures and standards so that interaction bugs may
only be discovered by an external testing team after the system has been
integrated.

A.2.6 Integration and Deployment

A process of continuous integration is commonly used in product develop-
ment. Whenever a developer is satisfied that the changes they have made are
complete, they commit these changes and the system is rebuilt. This is a more
difficult process when several companies are involved as they may use differ-
ent technology platforms to support their development. For these systems, it is
more likely that there will be an integration team that collects the components
of the system and takes responsibility for system integration.

If a software product is delivered as a cloud service, a new version of the
system may be deployed as soon as changes are accepted (continuous deploy-
ment). Even when continuous deployment is not used, it is normal practice to
update and redeploy products on a very frequent basis.

By contrast, new releases of custom systems, especially those that add
new functionality, tend to be relatively infrequent. The reason for this is that
these systems are embedded in business processes and new system versions
may mean these processes have to be changed. This is a much slower process
than software change and so companies prefer a longer release cycle for their
custom software systems.

A.2.7 Maintenance and evolution

After the software has been delivered, it has to change to reflect changes in
its operating environment, expectations of users and external factors such as
new laws and regulations.

Software product developers decide what changes are required to remain
competitive and when to introduce these changes. They are in complete con-
trol of the product and so can introduce changes when it is practical to do
so. By contrast, custom software systems are owned by a customer and the
customer decides what changes are required. They must then interact with
software developers who implement the changes. The practical consequence
of this is that it takes much longer to agree and deliver changes for custom
software systems.

Z01_SOME6349_01_GE_APP.indd 352 12/10/2020 16:01

Both software products and software systems can have remarkably long
lifespans. I regularly use Microsoft Excel and the first version of this spread-
sheet application was delivered in 1985. However, because the product owner
is in complete control of the product, they can make decisions to update and
change the implementation technology used. Although the name is the same,
I suspect there is very little code from the 1985 version of Excel in the current
version. Product companies reimplement their software because they under-
stand that, in the longer term, this will make it easier to change in future and
so will save them money.

For custom software, the software owner decides on the changes required
and contracts the implementation of the changes to a development company.
Because they don’t understand the software, the owner cannot know when
it is sensible to reimplement a system. Consequently, changes are made to
the existing system and, over time, this system becomes more and more dif-
ficult to understand and expensive to maintain. Often, the technology used
to develop the custom system becomes obsolete. This adds to the cost of
maintaining the system as the number of developers who have expertise in
using this older technology decreases with time.

 A.2 ■ A comparison of product and system engineering 353

Z01_SOME6349_01_GE_APP.indd 353 12/10/2020 16:01

Index

A

Acceptance testing, 25
Access control lists (ACLs), 212–213
Access control policy, 211–212
ACID transactions, 175
Activity logging, 263
Advanced message queuing protocol

(AMPQ), 174
Agile software engineering, 30–59

agile manifesto for, 31–32
development principles, 33–34
extreme programming (XP), 34–37
incremental development of, 32–33
methods of, 30–34
Scrum, 37–57
software architecture and, 93–94

Alpha software testing, 271
Ancestor tree, 245–246
Application-level encryption, 221
Application programming interface (API),

168–169, 289–290, 346
feature testing through, 289–290
gateway, 168–169

Application services, 112
Architectural design, 98–102,

169–171
authentication layers of, 100
components, 103–105
guidelines, 105–107

importance of issues, 99–100
informal models for, 101–102
issues influencing decisions, 98
layered models for, 102–103, 108–109,

111–112
microservices decisions, 169–171
module, 104
security layers of, 100
services, 103, 111–113
system availability and, 101

Architectural style, see Microservices
architecture

Architecture, see Cloud software architecture;
Distribution architecture; Software
architecture

Assert statements, 264–265
Asymmetric encryption, 215–216, 218
Attacks, 195–204, 295–297

brute force, 204
buffer overflow, 199
cross-site scripting, 200–201
denial-of-service, 203–204
effects on security, 195–198
injection, 198–201
input validation defense, 200, 201
IP address tracking defense, 203
password defense, 204
security testing, 295–297
session hijacking, 201–202
SQL poisoning, 199–200
temporary lockout defense, 203

Z02_SOME6349_01_GE_IDX.indd 354 30/09/2020 16:55

 Index 355

Attribute-based authentication, 205–206
Authentication

attribute-based, 205–206
federated identity system for, 207–209
iLearn system feature, 87
knowledge-based, 205–207
microservice architecture, 162–163, 178–180
mobile device, 209–211
multi-factor, 206
password-based, 206–207
password workflow, 178–180
possession-based, 205
public/private key encryption for, 216
SaaS issues, 141
security and, 205–211
software architecture security layer, 100

Authorization, 211–213
access control lists (ACLs), 212–213
access control policy, 211–212

Automated software testing, 283–288
Automation, DevOps, 320–331

aspects of, 320–321
configuration management (CM) tools,

329–330
continuous delivery, 326
continuous deployment, 327–329
continuous integration (CI), 321–326, 329
dependency model for, 324
file dependencies, 324–325
infrastructure as code, 329–331
issue-tracking tools for, 320–321
source code management integration, 321

Auto-save, 263–264

B

Backlogs, see Product backlog; Sprint
backlog

BDUF (Big Design Up Front), 93
Beck, Kent, 34
Behavior-driven development (BDD), 279
Behavioral pattern, 245–246, 246–248
Beta software testing, 271
Blacklisting, 253
Bottom-up system architecture, 103

Branching and merging code, 311, 316–318
Brute force attacks, 204
Buffer overflow attacks, 199
Bugs, software testing for, 269–270, 297–301
Business issues

cloud platforms, 156–157
privacy and, 225–226
SaaS multi-tenant system customization, 144

Business success measurements, 332

C

Certificate authority (CA), 217–218
Chakravarty, Payal, 333
Choreography, microservices architecture

workflow, 178–180
Class responsibility, complexity of, 238–240
Client-server architecture, 113–118

database management system
(DBMS), 175

distribution architecture issues, 118
distribution architecture model, 113–114
HTTP protocol, 115
JSON data representation, 115–116
mobile software products, 113–115
model-view-controller (MVC) pattern,

114–115
multi-tier system architecture, 116–117
server types, 116
service-oriented architecture, 117–118
web-based applications, 113–117
XML data representation, 115

Cloud-based software
benefits of, 128
containers for, 130–134
elasticity, 127
microservice architecture for, 168
multi-instance systems, 148–150
multi-tenant systems, 142–148
remote servers of, 126
resilience, 127, 153–154
scalability, 127, 152–153
services, 134–142
virtual machines (VMs) for, 129–130
virtual servers of, 126–134

Z02_SOME6349_01_GE_IDX.indd 355 30/09/2020 16:55

356 Index

Cloud platforms, 155–157
Cloud software architecture, 150–157

business issues, 156–157
database organization, 150–152
delivery platforms, 155–157
object-oriented approach of, 154
scalability and resilience of, 152–154
standby system for, 153–154
system monitoring, 154
technology issues, 155–157

Code completeness checklist, 51
Code development sprints, 50–51
Code management, 309–320

centralized source code of, 313
code transfer, 311
DevOps and, 310
file management features, 311–313
Git system for, 313–320
merging and branching, 311, 316–318
open-source development, 318–320
practice of, 309–310
repository cloning, 313–315
version information, 311
version storage and retrieval, 311,

312–313
Code reuse, 244. See also Design patterns
Code reviews, 297–301

activities, 298–299
checklist, 300–301
process for, 298
software bug testing, 297–301

Code smells, 251
Cohesion, microservices, 165
Collective ownership, 36–37
Column-level encryption, 221
Complexity of system, guidelines for,

104–105
Components

relationships, 104–105
services accessed by, 93
software architecture and, 93

Configuration management (CM) tools,
DevOps, 329–330

Configuration services, 112

Container-based multi-instance systems,
148–150

Containers, 130–134, 191
benefits of, 133–134
cloud-based servers and, 130–134
Docker system, 131–133
isolated services of, 130–131
service deployment and, 191

Continuous delivery, DevOps, 326
Continuous deployment, 190–191, 327–329

DevOps, 327–329
microservices architecture, 190–191

Continuous integration (CI), 352
activities of, 322
code development sprints, 51
dependency model for, 324
DevOps, 321–326, 329
extreme programming (XP), 36
file dependencies, 324–325
issue-tracking tools for, 329

Coupling, microservices, 164–165
Creational pattern, 245–246, 248
Cross-cutting concerns, architectural design

and, 107–108
Cross-site scripting attacks, 200–201
Customer experience

communication and, 22
product vision development and, 19
SaaS advantages and disadvantages,

139–140
Customer prototype demonstration, 26–27
Customer testing, 25

D

Data
ACID transactions, 175
complexity, 237
distribution and sharing, microservices,

174–178
encryption, 219–221
failures, 259
inconsistency of, 175–177

Z02_SOME6349_01_GE_IDX.indd 356 30/09/2020 16:55

 Index 357

microservices architecture, 174–178
privacy and protection of, 223–227
storage and management, SaaS, 140–141
transaction log, 177–178

Data consistency management, microservices,
167

Database management system (DBMS), 175
Databases

cloud-based architecture, 150–152
distribution architecture issues, 118
extensibility, 145–147
file encryption, 220
NoSQL, 120
questions to ask when choosing,

151–152
relational, 120
SaaS multi-tenant systems, 142–143,

145–147
software architecture issues, 119–120

Decision complexity, 237
Decryption, 213
Defense, see Attacks
Delivery platforms, mobile software products,

120–121. See also Platforms
Denial-of-service attacks, 203–204
Dependency model, DevOps, 324
Dependent data inconsistency, 176
Deployment, see Service deployment
Design patterns, 244–250

ancestor tree for, 245–246
behavioral, 245–246, 246–248
creational, 245–246, 248
Facade, 249
Observer, 246–248
Prototype, 248
separation principles of, 244
structural, 245–246, 249

Development technologies, 122–123
DevOps, 305–338

adoption of, 306–307
automation, 320–331
benefits of, 307–308
code management, 309–320
measurement programs, 331–335

principles of, 307
software development, release and support

of, 305–306
Digital certificates, 217–219
Direct and indirect service communication,

173–174
Distributed denial-of-service (DDOS) attacks,

203
Distributed version control system (DVCS),

313
Distribution architecture, 113–118. See also

Client-server architecture
Docker container system, 131–133
Document retrieval system, 103
Domain experience, product vision

development and, 19

E

Effort estimation, Scrum product backlog,
45–46

Elasticity, cloud-based servers, 127
Encryption, 213–223

application-level, 221
asymmetric, 215–216, 218
authentication and, 216
certificate authority (CA), 217–218
column-level, 221
data, 219–221
database file, 220
decryption and, 213
digital certificates, 217–219
file-level, 220
key management system (KMS),

221–223
multi-level, 220
public/private key, 216
SaaS multi-tenant system concerns,

147–148
security and, 213–223
symmetric, 214–215, 218
technology and, 214
transport layer security (TLS), 217–218

Z02_SOME6349_01_GE_IDX.indd 357 30/09/2020 16:55

358 Index

End-to-end pathways, 281–282
Equivalence partitions, 274–276,

285–286
Eriksson, Martin, 21
Errors, see Program errors; Software testing
European Union data protection regulations

(GDPR), 224
Event-based systems, 102
Exception handling, 260–263
Extensibility multi-tenant system

databases, 145–147
External service failure, 181
Extreme programming (XP),

34–37
collective ownership, 36–37
practices, 36
principles of, 34–35
user stories for, 35–36

F

Facade pattern, 249
Failure management

activity logging, 263
assert statements, 264–265
auto-save, 263–264
code, 167
data failures, 259
exception handling, 260–263
microservices architecture, 167,

180–183
program exceptions, 259
timeout mechanisms, 265
timing failures, 259

Fault avoidance, 233–252
code smells, 251
complexity reduction and, 237–238,

251–252
design patterns, 244–250
program complexity and,

235–243
program errors and, 234–235
refactoring, 250–252

Feasibility prototype demonstration, 26
Feature creep, 83–84
Feature testing, 274, 278–279
Features

coherence of, 80
defined, 61
factors in set design, 82–83
Git system and design of, 81–82
identification of, 80–89
iLearn system, 65, 67–68, 70–75,

77–78, 84–87
independence of, 80
input/action/output models, 63
knowledge sources, 80–81
list of, 86–88
microservice authentication, 162–163
New Group, 62–64
personas, 64–69
product vision, 84–86
relevance of, 80
scenarios, 69–75
software product development

and, 60–91
template for, 62–64
user stories, 76–80

Federated identity system, 207–209
File dependencies, DevOps, 324–325
File-level encryption, 220
File management, 311–313
Fowler, Martin, 182
Function as a service (FaaS), 136–137
Functional software testing, 270,

272–282
end-to-end pathways for, 281–282
equivalence partitions for, 274–276
feature testing, 274, 278–279
goals, 270
interaction tests, 278
processes, 274
release testing, 274, 282
system testing, 274, 280–282
unit testing, 273–277
usefulness tests, 278
user stories for, 278–279

Z02_SOME6349_01_GE_IDX.indd 358 30/09/2020 16:55

 Index 359

G

GET request, HTTP, 188–189
Git system, 81–82, 313–320

advantages of, 314–315
code management using, 313–320
feature design and, 81–82
merging and branching, 316–318
open-source development, 318–320
repository cloning, 313–315

Graphical user interface (GUI) for, 289

H

HTTP protocol
client-server communication and, 115
direct service communication and, 174
incident description, 186
requests and responses, 186–189
RESTful services, 174, 183–189

HTTP status codes, 181
Hybrid execution models, 15–16

I

iLearn system
architectural design principles, 110–111
authentication feature, 87
configuration feature, 87–88
feature characteristics, 84–86
layered architectural model of, 111–112
persona examples, 65, 67–68
scenario examples, 70–73
user stories from, 77–78
vision statement, 20, 84
writing scenarios, 74–75

Implement once guideline, 106
Incident descriptions, RESTful

services, 186, 188
Incremental development

agile methods, 32–34

extreme programming (XP), 35–36
Scrum, 38, 47

Information leakage, SaaS, 141–142
Infrastructure as a service (IaaS), 135–136
Infrastructure as code, DevOps, 329–331
Inheritance hierarchies, complexity of,

242–243
Injection attacks, 198–201
Input field, 253
Input validation, 233, 252–259

blacklisting, 253
defense from attacks, 200, 201
implementation methods, 254
number checking, 258–259
programming reliability improvement, 233,

252–259
regular expressions (REs), 255–258
security checks, 253–254
whitelisting, 254

Integrated services, 112–113
Interaction feature tests, 278
Interaction recording tools, 290–291
Interface technologies, 113
Internal service failure, 181
Internal tool development, 18
IP address tracking defense, 203
Issue-tracking tools, DevOps, 320–321, 329

J

JSON
client-server communication and,

115–116
data representation, 115–116, 174
incident description, 187–188
RESTful services use of, 184, 187–188

K

Key management system (KMS), 221–223
Knowledge-based authentication,

205–207

Z02_SOME6349_01_GE_IDX.indd 359 30/09/2020 16:55

360 Index

L

Layer models
architectural system decomposition, 102–103,

106–109
authentication, 100
cross-cutting concerns, 107–108
iLearn architectural design, 111–112
web-based applications, 108–109

Load software testing, 270, 272

M

Maintainability, programming and, 231–232
Management.

code management, 309–320
data consistancy, 167
data storage and, SaaS, 140–141
database management system (DBMS),

175
failure management, 180–183
message management code, 166
microservices architecture, 166–167,

180–183
password management, 166
security, 197
system responsibilities for services, 136

Manual system testing, 290
Measurement programs, DevOps, 331–335

data collection for, 335
metrics for, 333–334
types of, 332

Merging and branching code, 311, 316–318
Message brokers, 173–174
Message management code, microservices,

166
Microservices

authentication features, 162–163
characteristics of, 164–165
cohesion, 165
coupling, 164–165
data consistancy management, 167

development of, 160–162
failure management code, 167
functions of, 162–163
message management code, 166
password management, 166
single responsibility principle, 165–166
size of, 165–166
support code, 166–167
user interface, 167

Microservices architecture, 160–194
architectural style of, 167–169
cloud-based systems, 168
data distribution and sharing, 174–178
design decisions, 169–171
direct and indirect service communication,

173–174
failure management, 180–182
message brokers, 173–174
mobile device photo-printing example,

168–169
REST architectural style, 183–184
RESTful services, 183–188
service communications, 171–174
service coordination, 178–180
service deployment, 188–192
software services and, 160–163
synchronous and asynchronous interaction,

172–173
workflow, 178–180

Mobile devices and software products
authentication, 209–211
client-server architecture, 113–115
delivery platforms, 120–121
distribution architecture issues, 118
intermittent connectivity, 120
microservices architecture photo-printing

example, 168–169
model-view-controller (MVC) pattern,

114–115
on-screen keyboards, 121
power management, 121
processor power, 120

Model-view-controller (MVC) pattern,
114–115

Z02_SOME6349_01_GE_IDX.indd 360 30/09/2020 16:55

 Index 361

Module, 104
Monolithic systems, 154, 168
Moore, Geoffrey, 18
Multi-instance systems, 148–150
Multi-level encryption, 220
Multi-tenant systems, 142–148

advantages and disadvantages of, 143
business customization requirements, 144
database extensibility, 145–147
databases, 142–143
encryption concerns, 147–148
multilevel access control, 147–148
security concerns, 147–148
software as a service (SaaS) design and,

141–142
user interfaces for SaaS access,

144–145
Multi-tier web-based system architecture,

116–117
Multilevel access control, SaaS multi-tenant

systems, 147–148
Multiple database architecture, 96–97

N

Name checking
equivalence partitions and, 275–276
functions, 256–257, 275–276
input validation, 253–254, 256–257
regular expressions (REs) and, 256–257

Nested conditional statements, complexity of,
240–242

New Group features, 62–64
Newman, Sam, 180
NoSQL databases, 120
Number checking, 258–259

O

Object-oriented systems, 154, 345
Observer pattern, 246–248
One-off custom software, 11–12, 31

Open-source development, Git system,
318–320

Open-source software decisions, 122
Orchestration, microservices architecture

workflow, 178–180

P

Password authentication, 178–180, 206–207
choreographed vs orchestrated approaches,

178–180
microservices architecture workflow,

178–180
security and, 206–207

Password management, microservices, 166
Passwords used in attacks and defense, 204
Performance software testing, 270–271
Personas, 64–69
Plan-driven development, 31
Platform as a service (PaaS), 135–136
Platforms

business issues, 156–157
cloud-based software, 155–157
mobile software product delivery, 120–121
software product functionality and, 14–15
technology issues, 120–121, 155–157

Possession-based authentication, 205
Privacy, 223–227

business reasons, 225–226
concept of, 223–224
controls, 226–227
data protection laws, 224–225
data protection principles, 225–226
European Union data protection regulations

(GDPR), 224
Process measurements, 332
Process metrics, 333–334
Product backlog

creation, 44
effort estimation, 45–46
estimation, 44–46
prioritization, 44–45
product manager (PM) for, 24

Z02_SOME6349_01_GE_IDX.indd 361 30/09/2020 16:55

362 Index

Product backlog (Continued)
refinement, 44
Scrum agile processing, 39–40, 42–46
software use of, 24
sprint cycle and, 39–40
story points, 45
velocity, 46

Product backlog items (PBIs), 42–45
backlog grooming of activities, 44
effort estimation, 45–46
examples of, 42
Scrum agile processing, 42–45
states of, 43
story points, 45

Product backlog review
Scrum, 43–45
sprints, 47, 52

Product-based software engineering, 13–15,
339–340

Product experience, product vision
development and, 19

Product managers (PMs), 21–25
acceptance testing by, 25
business needs from, 21
customer experience and communication, 22
customer testing and, 25
product backlog and, 24
product roadmap development, 23–24
product vision use of, 22–23
software development by, 21–25
technology constraints and awareness, 22
user interface (UI) design and, 25
user scenarios and stories, 24

Product Owner, Scrum development
role, 38–39, 55

Product quality attributes, 231–232
Product roadmap development, 23–24
Product vision, 17–20

features derived from, 84–86
fundamental questions for, 17–19
information sources for, 19
product managers (PMs) for, 22–23
software development and, 17–20
visual learning environment (VLE), 20

Program complexity, 235–243
class responsibility and, 238–240
data, 237
decision, 237
fault avoidance and, 235–243
inheritance hierarchies and, 242–243
nested conditional statements and, 240–242
reduction guidelines, 238
structural, 237

Program errors, 234–235, 269. See also Fault
avoidance

causes of, 234–235
understanding, 269

Program exceptions, 259
Programming, 231–269

errors, 269
failure management, 233, 259–265
fault avoidance, 233–252
input validation, 233, 252–259
maintainability, 231–232
product quality attributes for, 231–232
reliability of, 231–233
user experience attributes for, 231

Project-based software engineering, 12–14
Prototype pattern, 248
Prototyping, 19, 26–27

customer demonstration of, 26–27
feasibility demonstration of, 26
product vision development and, 19
software development and, 26–27

Public/private key encryption, 216

R

RabbitMQ service broker, 173–174
Refactoring, 36, 250–252
Regression software testing, 288
Regular expressions (REs), 255–258
Relational databases, 120
Release testing, 274, 282
Reliability of programming, 231–233
Remote servers, 126. See also Cloud-based

software; Virtual servers

Z02_SOME6349_01_GE_IDX.indd 362 30/09/2020 16:55

 Index 363

Replica inconsistency, 176
Repository cloning, Git system, 313–315
Representational state transfer (REST)

architectural style, 183–184
Research software, 18
Resilience, cloud-based servers, 127, 153–154
RESTful services, 174, 183–189

direct service communication of, 174
HTTP requests and responses, 186–189
incident descriptions, 186, 188
JSON for, 184, 187–188
microservices architecture and, 174,

183–189
operations for, 185–186
principles of, 184–185
REST architectural style for, 183–184
XML for, 184, 187–188

S

SaaS, see Software as a service (SaaS)
Scalability, cloud-based servers, 127,

152–153
Scenarios, 69–75

important elements of, 70–71
narrative, 71–73
product manager (PM) role, 23–24
structured, 72
user stories and, 23–24
writing, 73–75

Scrum, 37–57
backlog review, 43–45
benefits of, 41–42
potentially shippable product increment, 39
process (sprint cycle), 39–40
product backlog, 39–40, 42–46
Product Owner, 38–39, 55
product, 39
self-organizing development team, 39,

52–57
sprints, 39–40, 46–52
terminology for, 38–39
velocity, 39, 46

ScrumMaster, 38–39, 55–57
Security

architectural design and, 100
attacks on, 195–204
authentication, 205–211
authorization, 211–213
cloud-based features for, 197–198
cross-cutting concern of, 107–108
encryption, 147–148, 213–223
input validation for, 253–254
layers of authentication, 100
management, 197
multilevel access control, 147–148
privacy, 223–227
SaaS multi-tenant system concerns,

147–148
software architecture influence on,

95–96
system decomposition and, 107–108
system infrastructure stack, 195–197

Security testing, 270, 272, 295–297
attack prevention, 295–297
goals, 270, 272
programming mistakes, 297
risk-based approach, 295–296
vulnerability testing challenges, 295

Self-organizing development team, 39,
52–57

agile software engineering, 39, 52–57
Product Owner responsibilities, 55
Scrum approach, 52–55
ScrumMaster role, 55–57

Separation of concerns guideline, 105
Server choices, 121
Service-based execution models, 15–16
Service communications, 171–174, 183–188

direct and indirect, 173–174
message brokers, 173–174
RESTful services, 183–188
synchronous and asynchronous interaction,

172–173
Service coordination, microservices

architecture, 178–180. See also
Workflow

Z02_SOME6349_01_GE_IDX.indd 363 30/09/2020 16:55

364 Index

Service deployment, 188–192
containers, 191
continuous deployment, 190–191
microservices architecture, 188–192
versions (changes) of a service, 191–192

Service-level agreements (SLAs), 157
Service measurements, 332
Service metrics, 333–334
Service-oriented systems, 110–111, 117–118
Service performance failure, 181–182
Services. See also Microservices

component access of, 93
application, 112
cloud-based software, 134–142
configuration, 112
everything as, 134–137
function as a service (FaaS), 136–137
infrastructure as a service (IaaS), 135–136
integrated, 112–113
integration of, 111–113
platform as a service (PaaS), 135–136
shared services layer, 108–109
software architecture and, 93
software as a service (SaaS), 135–142
system decomposition and,
system management responsibilities for,

136
web-based services, 108–109

Session hijacking attacks, 201–202
Shared database architecture, 96
Single responsibility principle, microservices,

165–166
Software architecture, 92–125, 150–157

agile development and, 93–94
architectural design, 98–102
business issues, 156–157
client-server, 113–118
cloud-based, 150–157
component, 92–93, 103
databases, 119–120, 150–152
defined, 92–93
distribution, 113–118
importance of, 94–97
module, 104

multiple database, 96–97
multi-tier, 116–117
nonfunctional system quality attributes and,

94–95
object-oriented, 154
platforms, 120–121, 155–157
resilience of systems, 153–154
scalability of systems, 152–153
service, 93, 103, 111–113
service-oriented, 110–111, 117–118, 154
services of components, 93
shared database, 96
system decomposition, 102–113
system security influenced by, 95–96, 107–108
technology issues, 113, 118–123, 155–157

Software as a service (SaaS), 135–142
authentication, 141
benefits of, 137–138
cloud-based software products, 135–142
customer advantages and disadvantages,

139–140
data storage and management issues, 140–141
design issues, 141–142
information leakage, 141–142
multi-instance systems for, 148–150
multi-tenancy issues, 142
multi-tenant systems for, 142–148
user interfaces for, 144–145

Software development, release and support
of, 305–306. See also DevOps

Software product lines, 14–15
Software products, 11–29

acceptance testing, 25
customer testing, 25
design of, 60–61
engineering use of, 11–12
execution models, 15–16
features, 60–91
one-off, 11–12
product-based, 13–15
product development, 11–17
product managers (PMs), 21–25
product prototyping, 26–27
product vision, 17–20

Z02_SOME6349_01_GE_IDX.indd 364 30/09/2020 16:55

 Index 365

project-based, 12–14
user interface (UI) design, 25

Software testing, 269–304, 351–352
alpha, 271
beta, 271
bugs and, 269–270
code reviews, 297–301
functional, 270, 272–282
load, 270, 272
performance, 270–271
security, 270, 272, 295–297
test automation, 51, 283–291
test-driven development (TDD), 291–294
understanding programming errors, 269
user, 270–271

Source code management integration,
DevOps, 321

Spolsky, Joel, 18
Sprint backlog, 39–40, 50
Sprints, 39–40, 46–52

activities, 47–48
benefits of, 47
code completeness checklist, 51
code development, 50–51
continuous integration, 51
execution, 47
goals, 48–49
planning, 47
product backlog and, 39–40, 50
reviewing, 47, 52
Scrum process for, 39–40
test automation, 51
timeboxing, 46–47
velocity, 39, 49–50

SQL command, 199
SQL poisoning attacks, 199–200
Stable interfaces guideline, 106
Stand-alone execution models, 15–16
Standby system, cloud architecture,

153–154
Story points, Scrum product backlog, 45
Structural complexity, 237
Structural pattern, 245–246, 249
Student projects, 18

Support code, microservices, 166–167
Symmetric encryption, 214–215, 218
Synchronous and asynchronous interaction,

172–173
System decomposition, 102–113

architectural design guidelines, 105–107
complexity of system and, 104–105
component relationships, 104–105
cross-cutting concerns, 107–108
event-based systems, 102
iLearn architectural design, 110–112
layer models for, 102–103, 106–109,

111–112
service integration, 103, 111–113
technology-related choices, 113
validation concerns, 107
web-based applications, 108–109

System infrastructure stack, 195–197
System management responsibilities, cloud-

based software services, 136
System monitoring, cloud-based

software, 154
System testing, 274, 280–282, 290

end-to-end pathways for, 281–282
environmental testing, 280
feature interaction, 280, 290
process, 274

T

Technology issues
cloud platforms, 155–157
constraints and awareness, 22
database choices, 119–120
delivery platforms, 120–121
development technologies, 122–123
encryption and, 214
interface technologies, 113
layer affects, 113
open-source software decisions, 122
server choices, 121
system decomposition, 113

Z02_SOME6349_01_GE_IDX.indd 365 30/09/2020 16:55

366 Index

Temporary lockout defense, 203
Test automation, 51, 283–291

application programming interface (API),
289–290

automated testing, 283–288
code development sprints, 51
equivalence partitions for, 285–286
graphical user interface (GUI) for, 289
interaction recording tools for, 290–291
manual system testing, 290
regression testing, 288
software testing and, 283–291
system testing, 290
test pyramid for, 288
test runner for, 286
testing frameworks for, 283–285

Test-driven development (TDD),
36, 291–294

Test pyramid, 288
Testing frameworks, 283–285
Timeboxed sprint, 46–52. See also Sprints
Timeout mechanisms, 182–183, 265

microservices failure checks, 182–183
program failure management using, 265

Timing failures, 259
Top-down system architecture, 102
Torvalds, Linus, 313
Transaction log, 177–178
Transport layer security (TLS), 217–218

U

Unit testing, 273–277
equivalence partitions for, 274–276
function testing process for, 273–274
guidelines, 277
name-checking functions, 275–276

Usage measurements, 332
Usefulness feature tests, 278
User experience attributes, 231
User interface (UI) design, 25
User interfaces

microsystems, 167
SaaS multi-tenant systems, 144–145

User software testing, 270–271
User stories, 76–80

defined from scenarios, 77–80
epic, 77
extreme programming (XP), 35–36
feature description from, 78–79
feature testing and, 278–279
incremental planning, 35–36
negative, 79
product manager (PM) role, 23–24
software product development and, 76–80

V

Validation concerns, architectural design and,
107

Velocity, Scrum sprint and product backlog,
39, 46, 49–50

Virtual machines (VMs), 129–130
Virtual servers, 126–134. See also Cloud-

based software
cloud-based software use of, 126–129
containers for, 130–134
elasticity, 127
remote servers as, 126
resilience, 127
scalability, 127
virtual machines (VMs) for, 129–130

Vision statement, 20
Visual learning environment (VLE), 20
VM-based multi-instance systems,148–150

W

Web-based applications
client-server architecture, 113–117
distribution architecture issues, 118
layered architecture for, 108–109

Z02_SOME6349_01_GE_IDX.indd 366 30/09/2020 16:55

 Index 367

model-view-controller (MVC) pattern,
114–115

multi-tier system architecture,
116–117

RESTful services, 174, 183–189
server types, 116
system decomposition and, 108–109

Whitelisting, 254
Workflow, 178–180

choreography, 178–180
microservices architecture, 178–180
orchestration, 180
password authentication example,

178–180

X

XML
client-server communication and, 115–116
data representation, 115
incident description, 187–188
RESTful services use of, 184, 187–188

Y

YAGNI (You Ain't Gonna Need It) principle,
35, 93

Z02_SOME6349_01_GE_IDX.indd 367 30/09/2020 16:55

Z02_SOME6349_01_GE_IDX.indd 368 30/09/2020 16:55

This page is intentionally left blank

	Cover
	Title Page
	Copyright
	Preface
	Contents
	1. Software Products
	1.1 The product vision�����������������������������
	1.2 Software product management��������������������������������������
	1.3 Product prototyping������������������������������
	Key Points�����������������
	Recommended Reading��������������������������
	Presentations, Videos, and Links���������������������������������������
	Exercises����������������

	2. Agile Software Engineering
	2.1 Agile methods������������������������
	2.2 Extreme Programming������������������������������
	2.3 Scrum����������������
	Key Points�����������������
	Recommended Reading��������������������������
	Presentations, Videos, and Links���������������������������������������
	Exercises����������������

	3. Features, Scenarios, and Stories
	3.1 Personas�������������������
	3.2 Scenarios��������������������
	3.3 User stories�����������������������
	3.4 Feature identification���������������������������������
	Key Points�����������������
	Recommended Reading��������������������������
	Presentations, Videos, and Links���������������������������������������
	Exercises����������������

	4. Software Architecture
	4.1 Why is architecture important?
	4.2 Architectural design�������������������������������
	4.3 System decomposition�������������������������������
	4.4 Distribution architecture������������������������������������
	4.5 Technology issues����������������������������
	Key Points�����������������
	Recommended Reading��������������������������
	Presentations, Videos, and Links���������������������������������������
	Exercises����������������

	5. Cloud-Based Software
	5.1 Virtualization and containers��
	5.2 Everything as a service����������������������������������
	5.3 Software as a service��������������������������������
	5.4 Multi-tenant and multi-instance systems��
	5.5 Cloud software architecture��������������������������������������
	Key Points�����������������
	Recommended Reading��������������������������
	Presentations, Videos, and Links���������������������������������������
	Exercises����������������

	6. Microservices Architecture
	6.1 Microservices������������������������
	6.2 Microservices architecture�������������������������������������
	6.3 RESTful services���������������������������
	6.4 Service deployment�����������������������������
	Key Points�����������������
	Recommended Reading��������������������������
	Presentations, Videos, and Links���������������������������������������
	Exercises����������������

	7. Security and Privacy
	7.1 Attacks and defenses�������������������������������
	7.2 Authentication�������������������������
	7.3 Authorization������������������������
	7.4 Encryption���������������������
	7.5 Privacy������������������
	Key Points�����������������
	Recommended Reading��������������������������
	Presentations, Videos, and Links���������������������������������������
	Exercises����������������

	8. Reliable Programming
	8.1 Fault avoidance��������������������������
	8.2 Input validation���������������������������
	8.3 Failure management�����������������������������
	Key Points�����������������
	Recommended Reading��������������������������
	Presentations, Videos, and Links���������������������������������������
	Exercises����������������

	9. Testing
	9.1 Functional testing�����������������������������
	9.2 Test automation��������������������������
	9.3 Test-driven development����������������������������������
	9.4 Security testing���������������������������
	9.5 Code reviews�����������������������
	Key Points�����������������
	Recommended Reading��������������������������
	Presentations, Videos, and Links���������������������������������������
	Exercises����������������

	10. DevOps and Code Management
	10.1 Code management���������������������������
	10.2 DevOps automation�����������������������������
	10.3 DevOps measurement������������������������������
	Key Points�����������������
	Recommended Reading��������������������������
	Presentations, Videos, and Links���������������������������������������
	Exercises����������������

	Appendix 1: Product and System
Engineering Processes
	A.1 The evolution of software engineering
	A.2 A comparison of product and system engineering

	Index������������
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

